ATKINS' PHYSICAL CHEMISTRY-ACCESS
ATKINS' PHYSICAL CHEMISTRY-ACCESS
11th Edition
ISBN: 9780198834700
Author: ATKINS
Publisher: OXF
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 5F.3P
Interpretation Introduction

Interpretation: Whether the given mean activity coefficients for aqueous solution of NaCl at 25°C support the Debye-Huckel limiting law has to be confirmed.  Whether a better fit is obtained with the Davies equation has to be confirmed.

Concept introduction: The ionic strength is introduced in the Debye-Huckel limiting law which relates the activity coefficient as a function of the ionic strength of the solution.  It is dependent on the concentration of all the ions present in the solution.  It is a dimensionless quantity.  When the ionic strength of the solution is too high for the limiting law to be applicable, Davies equation is used which is an extended form of the Debye-Huckel limiting law.

Expert Solution & Answer
Check Mark

Answer to Problem 5F.3P

The given mean activity coefficients for aqueous solution of NaCl at 25°C support the Debye-Huckel limiting law.  A better fir is obtained with the Davies equation.

Explanation of Solution

The ionic strength (I) of a solution is given by the equation,

    I=12izi2(bi/bο)                                                                                        (1)

The ionic strength of the aqueous solution of NaCl is given as,

    I=12(zNa+2bNa+bο+zCl+2bCl+bο)                                                                            (2)

Where,

  • zNa+ is the charge on the Na+ ion.
  • zCl- is the charge on the Cl- ion.
  • bNa+ is the ,molality of the Na+ ion.
  • bCl+ is the ,molality of the Cl- ion.
  • bο is 1molkg-1.

The dissociation of NaCl is represented by the equation.

    NaClNa++Cl

The molality of Na+ ion is equal to the molality of Cl- ion

Let molality of Na+ ion and Cl- ion be b.

The charge on the cation, Na+ (zNa+) is +1.

The charge on the anion, Cl- (zCl) is 1.

Substitute the values of zNa+, zCl-, bNa+ and bCl+ in equation (2).

    I=12((1)2bbο+(1)2bbο)=12(2bbο)=bbο

The Debye-Huckel limiting law is given as,

    logγ±=A|zNa+zCl-|I1/2                                                                                (3)

Where

  • γ± is the activity coefficient.
  • A is 0.509 for an aqueous solution at 25°C.
  • I is the dimensionless ionic strength.
  • zNa+ is the charge on the Na+ ion.
  • zCl- is the charge on the Cl- ion.

Substitute the values of I, zNa+ and zCl- in equation (3).

    logγ±=A|zNa+zCl-|I1/2=A|(+1)×(1)|bbο=Abbο

The data given is,

b/(mmolkg-1)1.02.05.010.020.0
γ±0.96490.95190.92750.90240.8712

The value of logγ±  and b calculated from the above data is as follows.

γ±b/(mmolkg-1)logγ±b
0.96491-0.015521
0.95192-0.021411.414214
0.92755-0.032692.236068
0.902410-0.04463.162278
0.871220-0.059884.472136

The graph between logγ± taken on the y axis and b taken on the x axis is shown as,

ATKINS' PHYSICAL CHEMISTRY-ACCESS, Chapter 5, Problem 5F.3P , additional homework tip  1

Therefore, the given mean activity coefficients for aqueous solution of NaCl at 25°C support the Debye-Huckel limiting law (logγ±=Abbο).

The Davies equation is given as,

    logγ±=A|z+z|I1/21+BI1/2+CI                                                                            (4)

Where

  • γ± is the activity coefficient.
  • A is 0.509 for an aqueous solution at 25°C.
  • I is the dimensionless ionic strength.
  • zNa+ is the charge on the Na+ ion.
  • zCl- is the charge on the Cl- ion.
  • B is a dimensionless constant.
  • C is a dimensionless constant.

Substitute the values of I, zNa+ and zCl- in equation (4).

    logγ±=A|(+1)×(1)|(bbο)1/21+B(bbο)1/2+C(bbο)1/2=A(bbο)1/21+B(bbο)1/2+C(bbο)1/2

For B(bbο)1/2>>1, the above equation can be written as,

  logγ±=C(bbο)A(bbο)1/2B(bbο)1/2=C(bbο)AB

The graph between logγ± taken on the y axis and b taken on the x axis is shown as,

ATKINS' PHYSICAL CHEMISTRY-ACCESS, Chapter 5, Problem 5F.3P , additional homework tip  2

In the above graph, the slope (C) is 0.0022 and the intercept on the y axis (AB) is 0.0177.

Therefore, an improved fir is obtained for the Davies equation, logγ±=C(bbο)AB.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
None
Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v V
Experiment:  Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.

Chapter 5 Solutions

ATKINS' PHYSICAL CHEMISTRY-ACCESS

Ch. 5 - Prob. 5A.4DQCh. 5 - Prob. 5A.5DQCh. 5 - Prob. 5A.1AECh. 5 - Prob. 5A.1BECh. 5 - Prob. 5A.2AECh. 5 - Prob. 5A.2BECh. 5 - Prob. 5A.3AECh. 5 - Prob. 5A.3BECh. 5 - Prob. 5A.4AECh. 5 - Prob. 5A.4BECh. 5 - Prob. 5A.5AECh. 5 - Prob. 5A.5BECh. 5 - Prob. 5A.6AECh. 5 - Prob. 5A.6BECh. 5 - Prob. 5A.7AECh. 5 - Prob. 5A.7BECh. 5 - Prob. 5A.8AECh. 5 - Prob. 5A.8BECh. 5 - Prob. 5A.9AECh. 5 - Prob. 5A.9BECh. 5 - Prob. 5A.10AECh. 5 - Prob. 5A.10BECh. 5 - Prob. 5A.11AECh. 5 - Prob. 5A.11BECh. 5 - Prob. 5A.1PCh. 5 - Prob. 5A.3PCh. 5 - Prob. 5A.4PCh. 5 - Prob. 5A.5PCh. 5 - Prob. 5A.6PCh. 5 - Prob. 5A.7PCh. 5 - Prob. 5B.1DQCh. 5 - Prob. 5B.2DQCh. 5 - Prob. 5B.3DQCh. 5 - Prob. 5B.4DQCh. 5 - Prob. 5B.5DQCh. 5 - Prob. 5B.6DQCh. 5 - Prob. 5B.7DQCh. 5 - Prob. 5B.1AECh. 5 - Prob. 5B.1BECh. 5 - Prob. 5B.2AECh. 5 - Prob. 5B.2BECh. 5 - Prob. 5B.3AECh. 5 - Prob. 5B.3BECh. 5 - Prob. 5B.4AECh. 5 - Prob. 5B.4BECh. 5 - Prob. 5B.5AECh. 5 - Prob. 5B.5BECh. 5 - Prob. 5B.6AECh. 5 - Prob. 5B.6BECh. 5 - Prob. 5B.7AECh. 5 - Prob. 5B.7BECh. 5 - Prob. 5B.8AECh. 5 - Prob. 5B.8BECh. 5 - Prob. 5B.9AECh. 5 - Prob. 5B.9BECh. 5 - Prob. 5B.10AECh. 5 - Prob. 5B.10BECh. 5 - Prob. 5B.11AECh. 5 - Prob. 5B.11BECh. 5 - Prob. 5B.12AECh. 5 - Prob. 5B.12BECh. 5 - Prob. 5B.1PCh. 5 - Prob. 5B.2PCh. 5 - Prob. 5B.3PCh. 5 - Prob. 5B.4PCh. 5 - Prob. 5B.5PCh. 5 - Prob. 5B.6PCh. 5 - Prob. 5B.9PCh. 5 - Prob. 5B.11PCh. 5 - Prob. 5B.13PCh. 5 - Prob. 5C.1DQCh. 5 - Prob. 5C.2DQCh. 5 - Prob. 5C.3DQCh. 5 - Prob. 5C.1AECh. 5 - Prob. 5C.1BECh. 5 - Prob. 5C.2AECh. 5 - Prob. 5C.2BECh. 5 - Prob. 5C.3AECh. 5 - Prob. 5C.3BECh. 5 - Prob. 5C.4AECh. 5 - Prob. 5C.4BECh. 5 - Prob. 5C.1PCh. 5 - Prob. 5C.2PCh. 5 - Prob. 5C.3PCh. 5 - Prob. 5C.4PCh. 5 - Prob. 5C.5PCh. 5 - Prob. 5C.6PCh. 5 - Prob. 5C.7PCh. 5 - Prob. 5C.8PCh. 5 - Prob. 5C.9PCh. 5 - Prob. 5C.10PCh. 5 - Prob. 5D.1DQCh. 5 - Prob. 5D.2DQCh. 5 - Prob. 5D.1AECh. 5 - Prob. 5D.1BECh. 5 - Prob. 5D.2AECh. 5 - Prob. 5D.2BECh. 5 - Prob. 5D.3AECh. 5 - Prob. 5D.3BECh. 5 - Prob. 5D.4AECh. 5 - Prob. 5D.4BECh. 5 - Prob. 5D.5AECh. 5 - Prob. 5D.5BECh. 5 - Prob. 5D.6AECh. 5 - Prob. 5D.1PCh. 5 - Prob. 5D.2PCh. 5 - Prob. 5D.3PCh. 5 - Prob. 5D.4PCh. 5 - Prob. 5D.5PCh. 5 - Prob. 5D.6PCh. 5 - Prob. 5D.7PCh. 5 - Prob. 5E.1DQCh. 5 - Prob. 5E.2DQCh. 5 - Prob. 5E.3DQCh. 5 - Prob. 5E.4DQCh. 5 - Prob. 5E.1AECh. 5 - Prob. 5E.1BECh. 5 - Prob. 5E.2AECh. 5 - Prob. 5E.2BECh. 5 - Prob. 5E.3AECh. 5 - Prob. 5E.3BECh. 5 - Prob. 5E.4AECh. 5 - Prob. 5E.4BECh. 5 - Prob. 5E.5AECh. 5 - Prob. 5E.5BECh. 5 - Prob. 5E.1PCh. 5 - Prob. 5E.2PCh. 5 - Prob. 5E.3PCh. 5 - Prob. 5F.1DQCh. 5 - Prob. 5F.2DQCh. 5 - Prob. 5F.3DQCh. 5 - Prob. 5F.4DQCh. 5 - Prob. 5F.5DQCh. 5 - Prob. 5F.1AECh. 5 - Prob. 5F.1BECh. 5 - Prob. 5F.2AECh. 5 - Prob. 5F.2BECh. 5 - Prob. 5F.3AECh. 5 - Prob. 5F.3BECh. 5 - Prob. 5F.4AECh. 5 - Prob. 5F.4BECh. 5 - Prob. 5F.5AECh. 5 - Prob. 5F.5BECh. 5 - Prob. 5F.6AECh. 5 - Prob. 5F.6BECh. 5 - Prob. 5F.7AECh. 5 - Prob. 5F.7BECh. 5 - Prob. 5F.8AECh. 5 - Prob. 5F.8BECh. 5 - Prob. 5F.1PCh. 5 - Prob. 5F.2PCh. 5 - Prob. 5F.3PCh. 5 - Prob. 5F.4PCh. 5 - Prob. 5.1IACh. 5 - Prob. 5.2IACh. 5 - Prob. 5.3IACh. 5 - Prob. 5.4IACh. 5 - Prob. 5.5IACh. 5 - Prob. 5.6IACh. 5 - Prob. 5.8IACh. 5 - Prob. 5.9IACh. 5 - Prob. 5.10IA
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY