
(a)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.

Answer to Problem 5ALQ
General formula:
Example: NaCl, sodium chloride.
Explanation of Solution
Group 1 elements are alkaline metals, they can give one electron to form positive charged ion with charge + 1.
The general electronic configuration of group 1 elements is
Here, M represents the alkali metal.
Similarly, the general electronic configuration of group 7 or VII B(according to old IUPAC) elements is
Here, X represents the halogen.
The ionic compound should be neutral since, there is 1 positive and 1 negative charge, according to crisscross method, they combine in 1:1 ratio and the formula of ionic compound will be:
For example: The ionic compound formed by alkali metal sodium Na and halogen Cl will be NaCl and the name of compound will be sodium chloride.
(b)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.

Answer to Problem 5ALQ
General formula:
Example:
Explanation of Solution
Group 2 elements are alkaline earth metals, they can give two electrons to form positive charged ion with charge + 2.
The general electronic configuration of group 2 elements is
Here, M represents the alkali earth metal.
Similarly, the general electronic configuration of group 7 or VII B (according to old IUPAC) elements is
Here, X represents the halogen.
The ionic compound should be neutral since, there are2 positive chargesand 1 negative charge, according to crisscross method, 1 positive charged ion combines with 2 negative charged ions and the formula of ionic compound will be:
For example: The ionic compound formed by alkali earth metal magnesium Mg and halogen Cl will be
(c)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.

Answer to Problem 5ALQ
General formula:
Example:
Explanation of Solution
Group 1 elements are alkaline metals, they can give one electron to form positive charged ion with charge + 1.
The general electronic configuration of group 1 elements is
Here, M represents the alkali metal.
Similarly, elements in group 6 or VI B (according to old IUPAC) belongs to oxygen family. The general electronic configuration is
The formation of negatively charged ion will be as follows:
Here, Y represents the element from oxygen family.
The ionic compound should be neutral since, there is 1 positive chargeand 2 negative charges, according to crisscross method, 2 positive charged ions combines with 1 negative charged ion and the formula of ionic compound will be:
For example, the ionic compound formed between alkali metal Li and oxygen will be
(d)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.

Answer to Problem 5ALQ
General formula:
Example:
Explanation of Solution
Group 2 elements are alkaline earth metals, they can give two electrons to form positive charged ion with charge + 2.
The general electronic configuration of group 2 elements is
Here, M represents the alkali earth metal.
Similarly, elements in group 6 or VI B (according to old IUPAC) belongs to oxygen family. The general electronic configuration is
The formation of negatively charged ion will be as follows:
Here, Y represents the element from oxygen family.
The ionic compound should be neutral since, there are 2 positive and 2 negative charges, according to crisscross method, they combine in 1:1 ratio and the formula of ionic compound will be:
For example, the ionic compound formed between alkaline earth metal Mg and oxygen will be
Want to see more full solutions like this?
Chapter 5 Solutions
Introductory Chemistry
- For which Group 2 metal (M), is this process the most exothermic? M2+(g) + O2−(g) + CO2(g) → MO(s) + CO2(g) Group of answer choices M = Sr M = Mg M = Ca M = Baarrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); R₂BH (6); H₂O₂ / HO- (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI Solvent Reagent(s) Solvent Reagent(s) HO OHarrow_forwardFor which of the following ionic compounds would you expect the smallest difference between its theoretical and experimental lattice enthalpies? (You may assume these all have the same unit cell structure.) Electronegativities: Ca (1.0), Fe (1.8), Mg (1.2), O (3.5), S (2.5), Zn (1.6) Group of answer choices ZnO MgS CaO FeSarrow_forward
- In the Born-Haber cycle for KCl crystal formation, what enthalpy component must be divided by two? Group of answer choices KCl(s) enthalpy of formation Ionization energy for K(g) K(s) sublimation enthalpy Cl2 bond dissociation enthalpyarrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); H₂O₂ / HO (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI хот Br Solvent Reagent(s) Solvent Reagent(s)arrow_forwardWhat is the correct chemical equation for the lattice formation reaction for CaBr2? Group of answer choices Ca2+(g) + 2 Br−(g) → CaBr2(s) ½ Ca2+(g) + Br−(g) → ½ CaBr2(s) Ca(s) + Br2(l) → CaBr2(s) Ca(s) + 2 Br−(g) → CaBr2(s)arrow_forward
- PLEASE ANSWER THE QUESTION!!!arrow_forward3. SYNTHESIS. Propose a sequence of synthetic steps (FGI) that convert the starting material (SM) into the Target molecule. For each FGI in your proposed synthesis, specify the reagents / conditions, and draw the product(s) of that FGI. DO NOT INCLUDE the FGI mxn in the answer you submit. If an FGI requires two reagent sets, specify the order in which the reagent sets are added, e.g., i) Hg(OAc)2 / H₂O; ii) NaBH4/MeOH. Indicate the stereochemistry (if any) of the products of each FGI. FGI 1. Me Starting Material Source of all carbons in the Target molecule (can use multiple copies) Me Me Target molecule + enantiomerarrow_forwardcurved arrows are used to illustate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction mechanism stepsarrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




