
Architectural Drafting and Design (MindTap Course List)
7th Edition
ISBN: 9781285165738
Author: Alan Jefferis, David A. Madsen, David P. Madsen
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.9Q
To determine
The place where extension line should begin relative to the object and end relative to the last dimension line.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2.64
A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, v = 0.30).
Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon,
(c) the thickness of portion AB, (d) the cross-sectional area of portion AB.
2.75 kN
A
12 mm
50 mm
B
2.75 kN
Determine the heel and toe stresses and the factor of safeties for sliding and
overturning for the gravity dam section shown in the figure below for the following
loading conditions:
- Horizontal earthquake (Kh) = 0.1
-
Normal uplift pressure with gallery drain working
- Silt deposit up to 30 m height
- No wave pressure and no ice pressure
Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³
- Submerged weight of silt = 0.9 Ton/m³
==
- Coefficient of friction = 0.65 and angle of repose = 25°
Solve this question with the presence of gallery and without gallery., discuss
the issue in both cases....
Solve in table
144 m
BO
4m
W
8m
6m 8m
17m
120m
please solve this problem step by step
Chapter 5 Solutions
Architectural Drafting and Design (MindTap Course List)
Ch. 5 - Prob. 5.1QCh. 5 - Prob. 5.2QCh. 5 - Prob. 5.3QCh. 5 - Prob. 5.4QCh. 5 - Prob. 5.5QCh. 5 - Prob. 5.6QCh. 5 - Prob. 5.7QCh. 5 - Prob. 5.8QCh. 5 - Prob. 5.9QCh. 5 - Prob. 5.10Q
Ch. 5 - Prob. 5.11QCh. 5 - Prob. 5.12QCh. 5 - Prob. 5.13QCh. 5 - Prob. 5.14QCh. 5 - Prob. 5.15QCh. 5 - Prob. 5.16QCh. 5 - Prob. 5.17QCh. 5 - Prob. 5.18QCh. 5 - Prob. 5.19QCh. 5 - Prob. 5.20QCh. 5 - Prob. 5.21QCh. 5 - Prob. 5.22QCh. 5 - Prob. 5.23QCh. 5 - Prob. 5.24QCh. 5 - Prob. 5.25QCh. 5 - Prob. 5.26QCh. 5 - Prob. 5.27QCh. 5 - Prob. 5.28QCh. 5 - Prob. 5.29QCh. 5 - Prob. 5.30QCh. 5 - Prob. 5.31QCh. 5 - Prob. 5.32QCh. 5 - Prob. 5.33QCh. 5 - Prob. 5.34QCh. 5 - Prob. 5.35QCh. 5 - Prob. 5.36QCh. 5 - Prob. 5.37QCh. 5 - Prob. 5.38QCh. 5 - Prob. 5.4P
Knowledge Booster
Similar questions
- P C⭑ LTU BANNER WEB Compute the capit... P Depreciation for N... COA 361276 CERT... O Unit price. Question 5 2 pts In the event that parties disagree about the meaning of constitution, statute, or regulation, a lawsuit can be filed asking the judge to clarify the meaning of that law. When the judge clarifies it, it is called: O Executive Order. O Common Law. O Legislation. O Civil Law. Question 6 ing branches, EXCEPT: 2 ptsarrow_forward7,8 & 9 pleasearrow_forwardthe tied three-hinged arch is subjected to the loadings shown. Determine the components of reaction at A and C and the tension in the cablearrow_forward
- Calculate internal moments at D and E for beam CDE showing all working. Assume the support at A is a roller and B is a pin. There are fixed connected joints at D and E. Assume P equals 9.6 and w equals 0.36arrow_forwardDetermine the heel and toe stresses and the factor of safeties for sliding and overturning for the gravity dam section shown in the figure below for the following loading conditions: - - - - - Horizontal earthquake (Kh) = 0.1 Normal uplift pressure with gallery drain working Silt deposit up to 30 m height No wave pressure and no ice pressure Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³ - Submerged weight of silt = 0.9 Ton/m³ - Coefficient of friction = 0.65 and angle of repose = 25° Solve this question with the presence of gallery and without gallery., discuss the issue in both cases.... 144 m 4m 8m 6m Wi 8m +7m. 120marrow_forwardStudies have shown that the traffic flow on a two-lane road adjacent to a school can be described by the Greenshields model. A length of 0.5 mi adjacent to a school is described as a school zone (see the figure) and operates for a period of 30 min just before the start of school and just after the close of school. The posted speed limit for the school zone during its operation is 15 mi/h. Data collected at the site when the school zone is not in operation show that the jam density and mean free speed for each lane are 136 veh/mi and 63 mi/h. If the demand flow on the highway at the times of operation of the school zone is 90% of the capacity of the highway, determine the following. 0.5 mile School Zone (a) the velocity of the shock wave created by the operation of the school zone (Enter the velocity of the backward forming shock wave in mi/h. Indicate the direction with the sign of your answer.) mi/h (b) the number of vehicles affected by the school zone during this 30-minute operation…arrow_forward
- Briefly describe which is more important, a resume or a cover letter?Why? What is the purpose of the resume? What is the purpose of thecover letter?arrow_forwardA cylindrical container of internal diameter and height H =200 mm is filled with concrete asshown in the figure below. Beginning at room temperature (T = 20oC), the temperature isdecreased until the concrete develops internal tensile stress that may results in crack (as shown inthe figure on the right below). This is due to the thermal shrinkage of the concrete and strongadhesion between the concrete and the walls of the container. D = 100 mmDetermine the temperature at which the concrete develops a tensile crack.Hint: Assume that the concrete remains linearly elastic until failure.Information about concrete:E = 30 GPa (Young’s Modulus)ν = 0.2 (Poisson’s Ratio)α = 12 ·10-6mm/mm/ oC (Coefficient of thermal expansion)(σt)max = 3 MPa (tensile strength)arrow_forwardI will rate, thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,

Architectural Drafting and Design (MindTap Course...
Civil Engineering
ISBN:9781285165738
Author:Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:Cengage Learning

Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning

Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,