Concept explainers
Find the classification of the given soil using unified soil classification system and give the group symbols and group names.

Answer to Problem 5.9P
The classification of soil 1 using unified soil classification system is
The group symbol of the soil 1 is
The classification of soil 2 using unified soil classification system is
The group symbol of the soil 2 is
The classification of soil 3 using unified soil classification system is
The group symbol of the soil 3 is
The classification of soil 4 using unified soil classification system is
The group symbol of the soil 4 is
The classification of soil 5 using unified soil classification system is
The group symbol of the soil 5 is
The classification of soil 6 using unified soil classification system is
The group symbol of the soil 6 is
The classification of soil 7 using unified soil classification system is
The group symbol of the soil 7 is
The classification of soil 8 using unified soil classification system is
The group symbol of the soil 8 is
The classification of soil 9 using unified soil classification system is
The group symbol of the soil 9 is
The classification of soil 10 using unified soil classification system is
The group symbol of the soil 10 is
The classification of soil 11 using unified soil classification system is
The group symbol of the soil 11 is
The classification of soil 12 using unified soil classification system is
The group symbol of the soil 12 is
Explanation of Solution
Calculation:
For soil 1:
The plasticity index (PI) is 21.
Determine the coarse fraction.
Substitute 30 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction.
Substitute 70 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 70 % for percent of coarse fraction 30 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
The gravel fraction
Refer Figure 5.4 “Flowchart group names for gravelly and sandy soil” in the text book.
Take the group name as clayey sand with gravel for the group of SC and gravel fraction of
Thus, the classification of soil 1 using unified soil classification system is
For soil 2:
The plasticity index (PI) is 22.
Determine the coarse fraction as shown below.
Substitute 20 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 48 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 80 % for percent of coarse fraction 52 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
The sand fraction
Refer Figure 5.4 “Flowchart group names for gravelly and sandy soil” in the text book.
Take the group name as clayey gravel with sand for the group of GC and sand fraction of
Thus, the classification of soil 2 using unified soil classification system is
For soil 3:
The plasticity index (PI) is 28.
Determine the coarse fraction as shown below.
Substitute 70 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 95 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 30 % for percent of coarse fraction 5 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” in the text book.
The soil is a fine-grained soil.
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.5 “Flowchart group names for inorganic silty and clayey soil” in the text book.
Take the group name as sandy fat clay for the group of CH,
Thus, the classification of soil 3 using unified soil classification system is
For soil 4:
The plasticity index (PI) is 19.
Determine the coarse fraction as shown below.
Substitute 82 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 100 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 18 % for percent of coarse fraction 0 for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” in the text book.
The soil is a fine-grained soil.
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.5 “Flowchart group names for inorganic silty and clayey soil” in the text book.
Take the group name as lean clay with sand for the group of CL.
Thus, the classification of soil 4 using unified soil classification system is
For soil 5:
The plasticity index (PI) is 21.
Determine the coarse fraction as shown below.
Substitute 74 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 100 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 26 % for percent of coarse fraction 0 for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” in the text book.
The soil is a fine-grained soil.
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.5 “Flowchart group names for inorganic silty and clayey soil” in the text book.
Take the group name as lean clay with sand for the group of CL.
Thus, the classification of soil 5 using unified soil classification system is
For soil 6:
The plasticity index (PI) is 18.
Determine the coarse fraction as shown below.
Substitute 26 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 87 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 74 % for percent of coarse fraction 13 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
The gravel fraction
Refer Figure 5.4 “Flowchart group names for gravelly and sandy soil” in the text book.
Take the group name as clayey sand for the group of GC and sand fraction of
Thus, the classification of soil 6 using unified soil classification system is
For soil 7:
The plasticity index (PI) is 38.
Determine the coarse fraction.
Substitute 78 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction.
Substitute 88 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 22 % for percent of coarse fraction 12 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” in the text book.
The soil is a fine-grained soil.
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.5 “Flowchart group names for inorganic silty and clayey soil” in the text book.
Take the group name as fat clay with gravel for the group of CH,
Thus, the classification of soil 7 using unified soil classification system is
For soil 8:
The plasticity index (PI) is 26.
Determine the coarse fraction as shown below.
Substitute 57 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 99 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 43 % for percent of coarse fraction 1 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” in the text book.
The soil is a fine-grained soil.
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.5 “Flowchart group names for inorganic silty and clayey soil” in the text book.
Take the group name as sandy fat clay for the group of CH,
Thus, the classification of soil 8 using unified soil classification system is
For soil 9:
The plasticity index (PI) is 16.
Determine the coarse fraction as shown below.
Substitute 11 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 71 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 89 % for percent of coarse fraction 29 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.4 “Flowchart group names for gravelly and sandy soil” in the text book.
Take the group name as poorly graded sand with clay and gravel for the group of SP-SC and gravel fraction of
Thus, the classification of soil 9 using unified soil classification system is
For soil 10:
Determine the coarse fraction as shown below.
Substitute 2 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 100 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 98 % for percent of coarse fraction 0 for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.4 “Flowchart group names for gravelly and sandy soil” in the text book.
Take the group name as well graded sand for the group of SW and gravel fraction of
Thus, the classification of soil 10 using unified soil classification system is
For soil 11:
The plasticity index (PI) is 21.
Determine the coarse fraction as shown below.
Substitute 65 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 89 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 35 % for percent of coarse fraction 11 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” in the text book.
The soil is a fine-grained soil.
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.5 “Flowchart group names for inorganic silty and clayey soil” in the text book.
Take the group name as sandy lean clay for the group of CL,
Thus, the classification of soil 11 using unified soil classification system is
For soil 12:
The plasticity index (PI) is 31.
Determine the coarse fraction as shown below.
Substitute 8 % for percent retained on No.200 sieve in Equation (1).
Determine the gravel fraction as shown below.
Substitute 90 % for percent passing No.4 sieve in Equation (2).
Determine the sand fraction using the relation.
Substitute 92 % for percent of coarse fraction 10 % for percent of coarse fraction in Equation (3).
Refer Table 5.2 “Unified soil classification system” and Figure 5.3 “Plasticity chart” in the text book.
The group symbol of the soil can be taken as
Provide the group name of soil as shown below.
Refer Figure 5.4 “Flowchart group names for gravelly and sandy soil” in the text book.
Take the group name as poorly graded sand with clay for the group of SP-SC and gravel fraction of
Thus, the classification of soil 12 using unified soil classification system is
Want to see more full solutions like this?
Chapter 5 Solutions
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 2 terms (12 months)
- how to manually plotting by coordinatesarrow_forwardmapping surveys/mappingarrow_forwardQuestion 3 (15pt) A traffic signal control is being designed for a four-leg intersection on a divided highway with the characteristics show in the table below. Determine an appropriate length of the yellow interval for each approach. (assuming the average vehicle length is 20ft, and the perception-reaction time is 1.0 sec, and deceleration rate of 11.2ft/sec²) Median width (ft) Number of 12ft lanes on each approach Design speed (mph) Grade North South approaches East West Approaches 18 3 45 0 10 2 35 3.5 SPEED LIMIT 45 18ft SPEED LIMIT 45 5arrow_forward
- Hi! Can you help me compute the concrete and masonry works for this structure based on the attached elevation drawing?The image shows the side view of a small building with labeled sections, wall openings (windows), and dimensions in centimeters. Specifically, I need help computing the following: For Concrete Works: Volume of concrete for footings, columns, and slab (if applicable) For Masonry Works (CHB Walls): Total wall area (excluding window openings) Number of CHBs required (based on 0.4 m x 0.2 m CHB) Cement and sand for block laying Cement, sand, and gravel for core filling (if reinforced) Cement and fine sand for plastering (both sides) Rebars needed for CHB reinforcement (if any) Please base it on the drawing dimensions. Let me know if additional assumptions or standards are needed (e.g., CHB size, mix ratio, thickness of plaster). Thank you!arrow_forwardHi! Can you help me compute the Masonry Works for the 3rd Floor only based on this image?This image shows all my completed concrete, rebar, slab, and formwork computations for the 3rd floor of a 3-storey residential building. Specifically, I need the following for CHB walls: Quantity of CHB Cement & sand for block laying (mortar) Cement, sand, and gravel for core filling Cement & fine sand for plastering Cement, sand, and gravel for CHB wall footing Number and length of vertical & horizontal rebars (10mm or as required)arrow_forwardP16.11 WP An assembly consisting of tie rod (1) and pipe strut (2) is used to support an 80 kip load, which is applied to joint B. Strut (2) is a pin-connected steel [E = 29,000 ksi] pipe with an outside diameter of 8.625 in. and a wall thickness of 0.322 in. For the loading shown in Figure P16.11, determine the factor of safety with respect to buckling for member (2). A C 24 ft B 80 kips FIGURE P16.11 12 ft 30 ftarrow_forward
- Hi! Based on the computations I've already completed for the second floor (shown in the attached image), can you help me compute the required materials for masonry works? Specifically, I need the following: Total quantity of CHB (Concrete Hollow Blocks) Cement and sand for block laying (mortar) Cement, sand, and gravel for CHB core filling Cement and fine sand for plastering Cement, sand, and gravel for CHB footing with pest control Reinforcing steel bars (vertical and horizontal) Please assume standard block size (e.g., 0.4m x 0.2m x 0.2m) and standard mortar/plaster thickness if not specified. Thank you!"arrow_forwardHi! I would like helping hand in computing all the materials needed for masonry works (CHB walls) on the ground floor. I’ve already computed the other structural elements — please refer to the attached image.arrow_forwardHi! Kindly help me compute the following based on the attached elevation plan and floor plan: Total Perimeter of the building – to be used for layouting. Total Length of Batter Board – include all sides where batter boards will be installed. Number and spacing of Stakes – assuming a stake is placed every 1.2 meters along the perimeter. Please show the complete solution and breakdown of your computation. Thank you!arrow_forward
- E D (B) (<) 2945 3725 250 2225 Car Port 5000 2500 Pool Area 2 3925 3465 2875 13075 Staff Room Bar Counter 1 GROUND FLOOR PLAN SCALE 1:100 Hallway 3 1560 4125 3125 $685 Laundry & Service Area 5 A Common T&B Kitchen & Dining Arear B Living Area 2425 Terrace E 2 12150 1330 2945 4150 5480 1800 3725 1925 3800 3465 2 3 9150 4125 3575 3925 Terrace Toilet & Bathroom Toilet Bathroom Bedroom 1 Bedroom 2 SECOND FLOOR PLAN SCALE Hallway 1:100 OPEN TO BELOW E B A 3 3725 2150 1330 2945 5480 4150 1925 ⑨ 2 9150 3800 4125 3465 3575 3925 Terrace R Toilet & Bathroom Toilet & Bathroom SECOND FLOOR PLAN SCALE Hallway 1:100 OPEN TO BELOW +arrow_forwardQ2/ In a design of a portable sprinkler system, the following information is given: • • The sprinklers are distributed in a square pattern with radius of the wetted circle of the sprinkler=15 m Consumption rate = 10 mm/day Efficiency of irrigation = 60% Net depth of irrigation (NDI)= 80 mm. Find the following: 1-Sprinkler application rate if HRS = 11. 2-Number of pipes required for irrigation. (50 Marks) 3-Discharge of sprinkler, diameter of nozzle, and the working head pressure if C=0.90. 4-Diameter of the sprinkler pipe for Slope=0. 5-Pressure head at the inlet and at the dead end of the sprinkler pipe for Slope=0. (F² + L²)((SF)² + L²) L² 2L² ≤ D² L² + S² ≤ D² A, = * 1000 S*L ≤D² N W Af m-11-P L' Hf = 1.14*109 * 1.852 * L *F,where c=120 D4.87 Source main pipe 180 m 540 m N 1 1 √m-1 F = im/Nm+1 = + + m+1 2N 6N2 i=1 Nozzle diameter (mm) 3< ds 4.8 4.8< ds 6.4 6.4arrow_forwardMiniatry of Higher scent Research University of Ke Faculty of Engineering Cell Engineering Department 2024-2025 Mid Exam-1 st Attempt Time Date: 17/04/2025 Notes: Answer all questions. Not all figures are to scale. Assume any values if you need them. Q1/ A farm with dimensions and slopes (50 Marks) = shown in the figure below. If you asked to design a border irrigation system and if you know that Net depth of irrigation - 96mm .Manning coefficient = 0.15, Time of work in the farm is 6 hours/day. Design consumption use of water from the crop (ET) 16 mm/day, Width of the agricultural machine equal to 2.5m, Equation of infiltration - D= 12-05 and Efficiency of irrigation= 60%. You can neglect the recession lag time. Find the width and number of the borders, Irrigation interval and time required to irrigate the whole farm, Depth of flow in the inlet of border Number of borders that irrigated in one day and The neglected recession lag time Slope of irrigation % Maximum border width 0-0.1 30…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning




