If a distribution of test scores is normal, with a
a. below 60? __________
b. below 70? ________
c. below 80? _____________
d. below 90? ____________
e. between 60 and 65? ____________
f. between 65 and 79? ___________
g. between 70 and 95? ___________
h. between 80 and 90? __________
i. above 99? _______
j. above 89? ____________
k. above 75?_____________
l. above 65?____________

a)
To find:
The percentage of area below 60.
Answer to Problem 5.6P
Solution:
The percentage of area below 60 is 5.05%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 60,
Substitute 60 for
The area below the score
The percentage of area below the score of
Conclusion:
Therefore, the percentage of area below the score of 60 is 5.05%.

b)
To find:
The percentage of area below 70.
Answer to Problem 5.6P
Solution:
The percentage of area below 70 is 23.27%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 70,
Substitute 70 for
The area below the score
The percentage of area below the score of
Conclusion:
Therefore, the percentage of area below the score of 70 is 23.27%.

c)
To find:
The percentage of area below 80.
Answer to Problem 5.6P
Solution:
The percentage of area below 80 is 57.14%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 80,
Substitute 80 for
The area between the mean and the score
Use the concept of symmetry, the area below the score 0.18 is,
The percentage of area below the score of
Conclusion:
Therefore, the percentage of area below the score of 80 is 57.14%.

d)
To find:
The percentage of area below 90.
Answer to Problem 5.6P
Solution:
The percentage of area below 90 is 86.21%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 90,
Substitute 90 for
The area between the mean and the score
Use the concept of symmetry, the area below the score 1.09 is,
The percentage of area below the score of
Conclusion:
Therefore, the percentage of area below the score of 90 is 86.21%.

e)
To find:
The percentage of area between 60 and 65.
Answer to Problem 5.6P
Solution:
The percentage of area between the score 60 and 65 is 6.85%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 60,
Substitute 60 for
The area between the mean and the score
For the score of 65,
Substitute 65 for
The area between the mean and the score
Use the concept of symmetry, the area between the score
The percentage of area between the score
Conclusion:
Therefore, the percentage of area between the score 60 and 65 is 6.85%.

f)
To find:
The percentage of area between 65 and 79.
Answer to Problem 5.6P
Solution:
The percentage of area between the score 65 and 79 is 41.69%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 65,
Substitute 65 for
The area between the mean and the score
For the score of 79,
Substitute 79 for
The area between the mean and the score
Use the concept of symmetry, the area between the score
The percentage of area between the score
Conclusion:
Therefore, the percentage of area between the score 65 and 79 is 41.69%.

g)
To find:
The percentage of area between 70 and 95.
Answer to Problem 5.6P
Solution:
The percentage of area between the score 70 and 95 is 70.55%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 70,
Substitute 70 for
The area between the mean and the score
For the score of 95,
Substitute 95 for
The area between the mean and the score
Use the concept of symmetry, the area between the score
The percentage of area between the score
Conclusion:
Therefore, the percentage of area between the score 70 and 95 is 70.55%.

h)
To find:
The percentage of area between 80 and 90.
Answer to Problem 5.6P
Solution:
The percentage of area between the score 80 and 90 is 29.07%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 80,
Substitute 80 for
The area between the mean and the score
For the score of 90,
Substitute 90 for
The area between the mean and the score
Use the concept of symmetry, the area between the score
The percentage of area between the score
Conclusion:
Therefore, the percentage of area between the score 80 and 90 is 29.07%.

To find:
The percentage of area above 99.
Answer to Problem 5.6P
Solution:
The percentage of area above 99 is 2.81%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 99,
Substitute 99 for
The area above the score
The percentage of area above the score of
Conclusion:
Therefore, the percentage of area above the score of 99 is 2.81%.

j)
To find:
The percentage of area above 89.
Answer to Problem 5.6P
Solution:
The percentage of area above 89 is 15.87%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 89,
Substitute 89 for
The area above the score
The percentage of area below the score of
Conclusion:
Therefore, the percentage of area above the score of 89 is 15.87%.

k)
To find:
The percentage of area above 75.
Answer to Problem 5.6P
Solution:
The percentage of area above 75 is 60.64%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 75,
Substitute 75 for
The area between mean and the score
Use the concept of symmetry, the area above the score
The percentage of area above the score of
Conclusion:
Therefore, the percentage of area above the score of 75 is 60.64%.

l)
To find:
The percentage of area above 65.
Answer to Problem 5.6P
Solution:
The percentage of area above 65 is 88.10%.
Explanation of Solution
Given:
The distribution of the test scores is normal. The mean score of the test is 78 and the standard deviation is 11.
Description:
The normal curve is symmetrical and its mean is equal to the median. The area below and above the mean is 50% or 0.05.
Formula used:
Let the data values be denoted by
The formula to calculate the
Where,
Calculation:
Given that the mean is 78 and standard deviation is 11.
For the score of 65,
Substitute 65 for
The area between mean and the score
Use the concept of symmetry, the area above the score
The percentage of area above the score of
Conclusion:
Therefore, the percentage of area above the score of 65 is 88.10%.
Want to see more full solutions like this?
Chapter 5 Solutions
The Essentials of Statistics: A Tool for Social Research
Additional Math Textbook Solutions
Pathways To Math Literacy (looseleaf)
Math in Our World
Precalculus: Mathematics for Calculus (Standalone Book)
Precalculus
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
- Question: A company launches two different marketing campaigns to promote the same product in two different regions. After one month, the company collects the sales data (in units sold) from both regions to compare the effectiveness of the campaigns. The company wants to determine whether there is a significant difference in the mean sales between the two regions. Perform a two sample T-test You can provide your answer by inserting a text box and the answer must include: Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value. (2 points = 0.5 x 4 Answers) Each of these is worth 0.5 points. However, showing the calculation is must. If calculation is missing, the whole answer won't get any credit.arrow_forwardBinomial Prob. Question: A new teaching method claims to improve student engagement. A survey reveals that 60% of students find this method engaging. If 15 students are randomly selected, what is the probability that: a) Exactly 9 students find the method engaging?b) At least 7 students find the method engaging? (2 points = 1 x 2 answers) Provide answers in the yellow cellsarrow_forwardIn a survey of 2273 adults, 739 say they believe in UFOS. Construct a 95% confidence interval for the population proportion of adults who believe in UFOs. A 95% confidence interval for the population proportion is ( ☐, ☐ ). (Round to three decimal places as needed.)arrow_forward
- Find the minimum sample size n needed to estimate μ for the given values of c, σ, and E. C=0.98, σ 6.7, and E = 2 Assume that a preliminary sample has at least 30 members. n = (Round up to the nearest whole number.)arrow_forwardIn a survey of 2193 adults in a recent year, 1233 say they have made a New Year's resolution. Construct 90% and 95% confidence intervals for the population proportion. Interpret the results and compare the widths of the confidence intervals. The 90% confidence interval for the population proportion p is (Round to three decimal places as needed.) J.D) .arrow_forwardLet p be the population proportion for the following condition. Find the point estimates for p and q. In a survey of 1143 adults from country A, 317 said that they were not confident that the food they eat in country A is safe. The point estimate for p, p, is (Round to three decimal places as needed.) ...arrow_forward
- (c) Because logistic regression predicts probabilities of outcomes, observations used to build a logistic regression model need not be independent. A. false: all observations must be independent B. true C. false: only observations with the same outcome need to be independent I ANSWERED: A. false: all observations must be independent. (This was marked wrong but I have no idea why. Isn't this a basic assumption of logistic regression)arrow_forwardBusiness discussarrow_forwardSpam filters are built on principles similar to those used in logistic regression. We fit a probability that each message is spam or not spam. We have several variables for each email. Here are a few: to_multiple=1 if there are multiple recipients, winner=1 if the word 'winner' appears in the subject line, format=1 if the email is poorly formatted, re_subj=1 if "re" appears in the subject line. A logistic model was fit to a dataset with the following output: Estimate SE Z Pr(>|Z|) (Intercept) -0.8161 0.086 -9.4895 0 to_multiple -2.5651 0.3052 -8.4047 0 winner 1.5801 0.3156 5.0067 0 format -0.1528 0.1136 -1.3451 0.1786 re_subj -2.8401 0.363 -7.824 0 (a) Write down the model using the coefficients from the model fit.log_odds(spam) = -0.8161 + -2.5651 + to_multiple + 1.5801 winner + -0.1528 format + -2.8401 re_subj(b) Suppose we have an observation where to_multiple=0, winner=1, format=0, and re_subj=0. What is the predicted probability that this message is spam?…arrow_forward
- Consider an event X comprised of three outcomes whose probabilities are 9/18, 1/18,and 6/18. Compute the probability of the complement of the event. Question content area bottom Part 1 A.1/2 B.2/18 C.16/18 D.16/3arrow_forwardJohn and Mike were offered mints. What is the probability that at least John or Mike would respond favorably? (Hint: Use the classical definition.) Question content area bottom Part 1 A.1/2 B.3/4 C.1/8 D.3/8arrow_forwardThe details of the clock sales at a supermarket for the past 6 weeks are shown in the table below. The time series appears to be relatively stable, without trend, seasonal, or cyclical effects. The simple moving average value of k is set at 2. What is the simple moving average root mean square error? Round to two decimal places. Week Units sold 1 88 2 44 3 54 4 65 5 72 6 85 Question content area bottom Part 1 A. 207.13 B. 20.12 C. 14.39 D. 0.21arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning





