University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.64P
A horizontal wire holds a solid uniform ball of mass m in place on a tilted ramp that rises 35.0° above the horizontal. The surface of this ramp is perfectly smooth, and the wire is directed away from the center of the ball (Fig. P5.64). (a) Draw a free-body diagram of the ball. (b) How hard does the surface of the ramp push on the ball? (c) What is the tension in the wire?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the Wall of Death carnival attraction, stunt motorcyclists ride around the inside of a large, 10-m-diameter wooden cylinder that has vertical walls. The coefficient of static friction between the riders’ tires and the wall is 0.90. What is the minimum speed at which the motorcyclists can ride without slipping down the wall?
A car accelerates down a hill (Fig. P5.95), going from rest to 30.0 m/s in 6.00 s. A
toy inside the car hangs by a string from the car's ceiling. The ball in the figure
represents the toy, of mass 0.100 kg. The acceleration is such that the string
remains perpendicular to the ceiling. Determine (a) the angle 0 and (b) the
tension in the string.
Figure P5.95
A space habitat for a long space voyage consists of two cabins each connected by a cable to a central hub as shown in Figure P7.26. The cabins are set spinning around the hub axis, which is connected to the rest of the spacecraft to generate artificial gravity. (a) What forces are acting on an astronaut in one of the cabins? (b) Write Newton’s second law for an astronaut lying on the “floor” of one of the habitats, relating the astronaut’s mass m , his velocity v , his radial distance from the hub r , and the normal force n, (c) What would n have to equal if the 60.0-kg astronaut is to experience half his normal Earth weight? (d) Calculate the necessary tangential speed of the habitat from Newton’s second law. (e) Calculate the angular speed from the tangential speed. (f) Calculate the period of rotation from the angular speed. (g) If the astronaut stands up, will his head be moving faster, slower, or at the same speed as his feet? Why? Calculate the tangential speed at the top of his…
Chapter 5 Solutions
University Physics (14th Edition)
Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...
Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A resistor and capacitor are connected in series across an AC generator. If the capacitor is replaced with a se...
Essential University Physics (3rd Edition)
In the circuit shown, how does the brightness of each individual bulb compare? Which light bulb draws the most ...
Conceptual Integrated Science
17.28 On-Demand Water Heaters. Conventional hot-water heaters consist of a tank of water maintained at a fixed ...
University Physics with Modern Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
A thin plate has a round hole whose diameter in its rest frame is D. The plate is parallel to the ground and mo...
Modern Physics
95. How does the density of seawater vary with changes in temperature? How does density change with salinity?
Conceptual Physical Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an old-fashioned amusement park ride, passengers stand inside a 4.6-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. A sign next to the entrance says "No children under 30 kg allowed." What is the minimum angular speed, in rpmrpm, for which the ride is safe?arrow_forwardIn an old-fashioned amusement park ride, passengers stand inside a 5.3-mm-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.61 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. A sign next to the entrance says "No children under 30 kg allowed." What is the minimum angular speed, in rpm, for which the ride is safe?arrow_forwardA loudspeaker of mass 25.0 kg is suspended a distance of h = 1.00 m below the ceiling by two cables that make equal angles with the ceiling. Each cable has a length of l = 2.50 m . Q: What is the tension T in each of the cables? Use 9.80 m/s2 for the magnitude of the free-fall acceleration.arrow_forward
- A hunter places a 1.0 kg rock in a sling and swings it in a horizontal circle around his head on a 1.0 m long vine. If the vine breaks at a tension of 200 N, what is the magnitude of the angle , in units of degrees, of the vine below the horizontal? Please see the figure below. Hint: Draw a free-body diagram for the stone, and let the coordinate axis (0,0) be centered on the stone. Also, the acceleration of the stone is along the x-axis. Also, think about Newton's Second Law and Uniform Circular Motion and use it to calculate the angle.arrow_forwardA small block with mass m is set on the top of an upside-down hemispherical bowl. If the coefficient of static friction between the block and the bowl is μs and the block is slowly repositioned at different points down the surface of the bowl, at what angle measured from the vertical will the block begin to slide? Write your answer in terms of the mass, m; the gravitational acceleration on Earth, g; and the coefficient of static friction, μs. (Assume the +y axis is vertically upward.)arrow_forwardThe drawing shows a baggage carousel at an airport. Your suitcase has not slid all the way down the slope and is going around at a constant speed on a circle ((r = 8.90 m) as the carousel turns. The coefficient of static friction between the suitcase and the carousel is 0.640, and the angle in the drawing is 5.90°. How much time is required for your suitcase to go around once? Assumme that the static friction between the suitcase and the carousel is at its maximum.arrow_forward
- A large box of mass M is moving on a horizontal floor at speed v0. A small box of mass m is sitting on top of the large box. The coefficient of static friction between the two boxes is μs and coefficient of kinetic friction between the large box and floor is μk. Find an expression for the shortest distance dmin in which the large box can stop without the small box slipping.arrow_forwardAn absent-minded physics professor has left her notebook on top of her car. The notebook has mass m = 1 kg. If the coefficient of static friction is u=0.7, then what is the largest linear acceleration the car can have without the notebook sliding off?arrow_forwardThe drawing shows a baggage carousel at an airport. Your suitcase has not slid all the way down the slope and is going around at a constant speed on a circle ((r = 12.0 m) as the carousel turns. The coefficient of static friction between the suitcase and the carousel is 0.840, and the angle 0 in the drawing is 12.9°. How much time is required for your suitcase to go around once? Assumme that the static friction between the suitcase and the carousel is at its maximum. Number MO Unitsarrow_forward
- Two small cylindrical plastic containers with flat bottoms are placed on a turntable that has a smooth flat surface. Canister A is empty; canister B is full. Each canister is the same distance r from the center. The coefficient of static friction between the canisters and the turntable is µs. The speed of the turntable is gradually increased. Describe what will happen. Include which container will fall off first or if they will fall off at the same time.arrow_forwardMary is whirling around on a merry-go-round at the playground that her friend Caitlin is gradually spinning faster and faster. (a) Determine the maximum speed Mary can go, if the coefficient of static friction between her shoes and the floor is 0.450. Assume that Mary is not hanging on, but is simply balancing on her feet at a distance of 4.50 m from the center of the merry-go-round. Use g = 10 m/s2. m/s. (b) Which, if any, of the following would help Mary stay on the merry-go-round without sliding? (Select all that apply.) O moving a little closer to the center of the merry-go-round O moving a little closer to the outer edge of the merry-go-round O wearing a heavy backpack that increases her massarrow_forwardA car is stuck in the mud. A tow truck pulls on the car with the arrangement shown in Figure P5.24. The tow cable is under a tension of 2500 N and pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut; that is, each is a bar whose weight is small compared to the forces it exerts and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. Determine the force of tension or compression in each strut. Proceed as follows. Make a guess as to which way (pushing or pulling) each force acts on the top pin. Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. If you obtain a positive answer, you correctly guessed the direction of the force. A negative answer means that the direction…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY