FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
* \Q1
The refrigerator shown in Fig. P5.35 operates at steady
state with a coefficient of performance of 4.5 and a power in-
put of 0.8 kW. Energy is rejected from the refrigerator to the
surroundings at 20°C by heat transfer from metal coils whose
average surface temperature is 28°C. Determine
(a) the rate energy is rejected, in kW.
(b) the lowest theoretical temperature inside the refrigerator, in
К.
(c) the maximum theoretical power, in kW, that could be de-
veloped by a power cycle operating between the coils and
the surroundings. Would you recommend making use of
this opportunity for developing power?
Refrigerator
B = 4.5
Surroundings, 20°C
Coils, 28°C
S.
0.8 kW
إضافة ملف
5.45 WP As shown in Fig. P5.45, an air conditioner operating at
steady state maintains a dwelling at 70°F on a day when the outside
temperature is 90°F. If the rate of heat transfer into the dwelling
through the walls and roof is 30,000 Btu/h, might a net power input to the
air conditioner compressor of 3 hp be sufficient? If yes, determine the
coefficient of performance. If no, determine the minimum theoretical
power input, in hp.
Chapter 5 no. 4
Knowledge Booster
Similar questions
- As shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH QH Reservoir at T R1 lo ali R2 Qc Cold reservoir at Te W. cycle W cycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R. respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy QC by heat transfer to a reservoir at TC = 450°R. All energy transfers are positive in the directions of the arrows. Determine:(a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles.(b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 450°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forwardTwo reversible power cycles are arranged in series. The first cycle receives energy by heat transfer from a reservoir at temperature TH and rejects energy to a reservoir at an intermediate temperature T. The second cycle receives the energy rejected by the first cycle from the reservoir at temperature T and rejects energy to a reservoir at temperature TC lower than T. Derive an expression for the intermediate temperature T in terms of TH and TC when,a. The net works of the two power cycles are equalb. The thermal efficiencies of the two power cycles are equalarrow_forward
- Exercise 5.50 The refrigerator shown in Fig operates at Refrigerator B = 4.5 steady state with a coefficient of performance of 4.5 and a power input of 0.8 kW. Energy is rejected from the refrigerator to the surroundings at 20°C by heat transfer from metal coils whose average surface temperature is 28°C. Surroundings, 20°C - Coils, 28°C Determine (a) the rate energy that is rejected, in kW. (b) the lowest theoretical temperature inside the refrigerator, in K. (c) the maximum theoretical power, in kW, that could be developed by a power cycle operating between the coils and the surroundings. Would you recommend making use of this opportunity for developing power? 0.8 kW 49 Chaplerarrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Weycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Hot reservoir at T RI W. cycle Reservoir at T R2 Wcycle Cold reservoir at Te Determine: (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 500°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Woycle-arrow_forwardA cyclic machine, shown in Fig. P5.56, receives 300 kJ from a 1000-K energy reservoir. It rejects 120 kJ to a 400-K energy reservoir, and the cycle produces 180 kJ of work as output. Is this cycle reversible, irreversible, or impossible? TH= 1000 K JL, QH = 300 kJ Суclic machine W = 180 kJ QL = 120 kJ T = 400 K %3Darrow_forward
- As shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH-1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Te - 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH lH R1 Reservoir Q at T 20 R2 lc Cold reservoir at Tc We cycle W Wcycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R, respectively. Also, determine the ratio of the network developed by the single cycle to the network developed by each of the two cycles, Wcycle-arrow_forwardA power cycle operates between hot and cold reservoirs at 500 K and 310 K. At steady state the cycle develops a power output of 0.1 MW. Determine the minimum theoretical rate at which energy is rejected by heat transfer to the cold reservoir in MW.arrow_forwardThree sub steps of a thermodynamic cycle are employed in order to change the state of a gas from 1 bar, 1.5 cubic meter and internal energy of 512 kJ. The processes are: 1st step: Compression at constant PV to a pressure of 2 bar and internal energy of 690 kJ. 2nd step: A process where work transferred is zero and heat transferred is - 150 kJ. 3rd step: A process where work transferred is -50 kJ. without KE and PE changes, determine: a. heat transferred during 1st step (kJ) b. heat transferred during 3rd step (kJ)arrow_forward
- I need some help in how to solve this problem. Any help will be appreciated. Thanksarrow_forwardIdentify valid processes as those that satisfy both the first and second laws of thermodynamics.arrow_forwardIn your own words, define efficiency as it applies to a device designed to perform an energy transformation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY