Concept explainers
Interpretation:
The total pressure (in atm) of a 15.0-L container at 28°C that contains N2, O2 and Cl2 has to be calculated.
Concept Introduction:
- An ideal gas has is a hypothetical gas that is formed by a few molecules so that, its density is low, and the intermolecular forces are null. The model of gas facilitates mathematical calculations to study gases.
- The
ideal gas law can be expressed in the following way,
Where P is the gas pressure (atm), V is the gas volume (L), T is the gas absolute temperature (K), n is the moles number of the gas and R is the ideal gas constant (
- The ideal gas mixture is a mixture of two or more ideal gases that has the following characteristics,
- Each component of the mixture behaves as ideal gas that occupies all the mixture volume at the mixture temperature.
- Each component exercises a partial pressure. The sum of the partial pressure of the components is equal to the total pressure of the mixture.
- The mole fraction is the ratio between the moles number of the component in the mixture and the total number of moles of gas in the mixture. It can be expressed in the following way,
Where, yi is the molar fraction of component i, ni is the moles number of component i and n total is the total moles number of the mixture.
- The partial pressure is the pressure that a gas of the mixture exercises if it occupies all the volume of the mixture.
- The partial pressure of each component in the mixture is directly proportional to its molar fraction. It can be expressed in the following way,
Where, Pi is the partial pressure of component i, Ptotal is the total pressure of the mixture and yi is the molar fraction of component i.

Trending nowThis is a popular solution!

Chapter 5 Solutions
CHEM FOR ENGNRNG SDNTS (EBOOK) W/ACCES
- Q10: (a) Propose a synthesis of C from A. (b) Propose a synthesis of C from B. Br Br ...\SCH 3 A B Carrow_forward9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forwardComplete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forward
- QUESTION 3: Provide the synthetic steps that convert the starting material into the product (no mechanism required). HO OH NH CH3 multiple steps 요요 H3Carrow_forwardQ6: Predict the effect of the changes given on the rate of the reaction below. CH3OH CH3Cl + NaOCH3 → CH3OCH3 + NaCl a) Change the substrate from CH3CI to CH31: b) Change the nucleophile from NaOCH 3 to NaSCH3: c) Change the substrate from CH3CI to (CH3)2CHCI: d) Change the solvent from CH3OH to DMSO.arrow_forwardQ3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. a) CI Cl فيكم H3C-Cl A B C D Br Br b) A B C Br H3C-Br Darrow_forward
- Q2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forwardSuppose the rate of evaporation in a hot, dry region is 1.76 meters per year, and the seawater there has a salinity of 35 ‰. Assuming a 93% yield, how much salt (NaCl) can be harvested each year from 1 km2 of solar evaporation ponds that use this seawater as a source?arrow_forwardhelparrow_forward
- Explain why only the lone pairs on the central atom are taken into consideration when predicting molecular shapearrow_forward(ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





