
Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.38PP
To determine
Force exerted by the cylinder on the bottom of the tank.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2. Express the following complex numbers in rectangular form.
(a) z₁ = 2еjл/6
(b) Z2=-3e-jπ/4
(c) Z3 =
√√√3e-j³/4
(d) z4 = − j³
A prismatic beam is built into a structure. You can consider the boundary conditions at A and B to be
fixed supports. The beam was originally designed to withstand a triangular distributed load, however,
the loading condition has been revised and can be approximated by a cosine function as shown in the
figure below. You have been tasked with analysing the structure. As the beam is prismatic, you can
assume that the bending rigidity (El) is constant.
wwo cos
2L
x
A
B
Figure 3: Built in beam with a varying distributed load
In order to do this, you will:
a. Solve the reaction forces and moments at point A and B.
Hint: you may find it convenient to use the principal of superposition.
(2%)
b. Plot the shear force and bending moment diagrams and identify the maximum shear force
and bending moment.
(2%)
c. Develop an expression for the vertical deflection. Clearly state your expression in terms of x.
(1%)
Question 1: Beam Analysis
Two beams (ABC and CD) are connected using a pin immediately to the left of Point C. The pin acts
as a moment release, i.e. no moments are transferred through this pinned connection. Shear forces
can be transferred through the pinned connection. Beam ABC has a pinned support at point A and a
roller support at Point C. Beam CD has a roller support at Point D. A concentrated load, P, is applied
to the mid span of beam CD, and acts at an angle as shown below. Two concentrated moments, MB
and Mc act in the directions shown at Point B and Point C respectively. The magnitude of these
moments is PL.
Moment Release
A
B
с
°
MB = PL
Mc=
= PL
-L/2-
-L/2-
→
P
D
Figure 1: Two beam arrangement for question 1.
To analyse this structure, you will:
a) Construct the free body diagrams for the structure shown above. When constructing your
FBD's you must make section cuts at point B and C. You can represent the structure as three
separate beams. Following this, construct the…
Chapter 5 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 5 - The instrument package shown in Fig. 5.18 weighs...Ch. 5 - A 1.0 -m-diameter hollow sphere weighing 200 N is...Ch. 5 - A certain standard steel pipe has an outside...Ch. 5 - A cylindrical float has a 10 -in diameter and is...Ch. 5 - A buoy is a solid cylinder 0.3 m in diameter and...Ch. 5 - A float to be used as a level indicator is being...Ch. 5 - A concrete block with a specific weight of...Ch. 5 - Figure 5.19shows a pump partially submerged in oil...Ch. 5 - A steel cube 100mm on a side weighs 80N. We want...Ch. 5 - A cylindrical drum is 2 ft in diameter, 3 ft long,...
Ch. 5 - If the aluminum weights described in Problem 5.10...Ch. 5 - Figure 5.20 shows a cube floating in a fluid....Ch. 5 - A hydrometer is a device for indicating the...Ch. 5 - For the hydrometer designed in Problem 5.13 what...Ch. 5 - For the hydrometer designed in Problem 5.13 , what...Ch. 5 - A buoy is to support a cone-shaped instrument...Ch. 5 - A cube has side dimensions of 18.00 in. It is made...Ch. 5 - A cube has side dimensions of 18.00 in. It is made...Ch. 5 - A ship has a mass of 292 Mg. Compute the volume of...Ch. 5 - An iceberg has a specific weight of 8.72kN/m3....Ch. 5 - A cylindrical log has a diameter of 450 mm and a...Ch. 5 - The cylinder shown in Fig. 5.23 is made from a...Ch. 5 - If the cylinder from Problem 5.22 is placed in...Ch. 5 - A brass weight is to be attached to the bottom of...Ch. 5 - For the cylinder with the added brass (described...Ch. 5 - For the composite cylinder shown in Fig. 5.25 what...Ch. 5 - A vessel for a special experiment has a hollow...Ch. 5 - A light foam cup similar to a disposable coffee...Ch. 5 - A light foam cup similar to a disposable coffee...Ch. 5 - Repeat Problem 5.29, but consider that the steel...Ch. 5 - Figure 5.27 shows a raft made of four hollow drums...Ch. 5 - Figure 5.28 shows the construction of the platform...Ch. 5 - For the raft shown in Fig. 5.27, how much of the...Ch. 5 - For the raft and platform shown in Figs. 5.27 and...Ch. 5 - A float in an ocean harbor is made from a uniform...Ch. 5 - Describe how the situation described in Problem...Ch. 5 - A cube 6.00 in on a side is made from aluminum...Ch. 5 - Prob. 5.38PPCh. 5 - A cylindrical block of wood is 1.00 m in diameter...Ch. 5 - A container for an emergency beacon is a...Ch. 5 - The large platform shown in Fig. 5.29 carries...Ch. 5 - Will the cylindrical float described in Problem...Ch. 5 - Will the buoy described in Problem 5.5 be stable...Ch. 5 - Will the float described in Problem 5.6 be stable...Ch. 5 - A closed, hollow, empty drum has a diameter of...Ch. 5 - Figure 5.30 shows a river scow used to carry bulk...Ch. 5 - Prob. 5.47PPCh. 5 - For the vessel shown in Fig. 5.26and described in...Ch. 5 - For the foam cup described in Problem 5.28, will...Ch. 5 - Referring to Problem 5.29, assume that the steel...Ch. 5 - Referring to Problem 5.30, assume that the steel...Ch. 5 - Prob. 5.52PPCh. 5 - Will the cylinder together with the brass plate...Ch. 5 - A proposed design for a part of a seawall consists...Ch. 5 - A platform is being designed to support some water...Ch. 5 - Prob. 5.56PPCh. 5 - A barge is 60 ft long, 20 ft wide, and 8 ft deep....Ch. 5 - If the barge in Problem 5.57 is loaded with 240000...Ch. 5 - A piece of cork having a specific weight of...Ch. 5 - Figure 5.20 shows a cube floating in a fluid, (a)...Ch. 5 - A boat is shown in Fig. 5.33(a). Its geometry at...Ch. 5 - (a) If the cone shown in Fig. 5.34 is made of pine...Ch. 5 - Refer to Fig. 5.35. The vessel shown is to be used...Ch. 5 - Prob. 5.64PPCh. 5 - Wetsuits are prohibited in some triathlons due to...Ch. 5 - A cylinder that is 500 mm in diameter and 2.0 m...Ch. 5 - The diving bell shown in Fig. 5.2 weighs 72 kN and...Ch. 5 - Prob. 5.68PPCh. 5 - A scuba diver with wet suit, tank, and gear has a...Ch. 5 - Prob. 5.70PPCh. 5 - Does steel float? It has a specific gravity of...Ch. 5 - Prob. 5.72PPCh. 5 - An undersea camera (Figure 5.36 ) is to hang from...Ch. 5 - Work Problem 5.73 again, but this time the camera...Ch. 5 - Write a program for evaluating the stability of a...Ch. 5 - For any cylinder of a uniform density floating in...Ch. 5 - For the results found in Project 2, compute the...Ch. 5 - Write a program for evaluating the stability of a...Ch. 5 - Write a program for determining the stability of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cantilevered rectangular prismatic beam has three loads applied. 10,000N in the positive x direction, 500N in the positive z direction and 750 in the negative y direction. You have been tasked with analysing the stresses at three points on the beam, a, b and c. 32mm 60mm 24mm 180mm 15mm 15mm 40mm 750N 16mm 500N x 10,000N Figure 2: Idealisation of the structure and the applied loading (right). Photograph of the new product (left). Picture sourced from amazon.com.au. To assess the design, you will: a) Determine state of stress at all points (a, b and c). These points are located on the exterior surface of the beam. Point a is located along the centreline of the beam, point b is 15mm from the centreline and point c is located on the edge of the beam. When calculating the stresses you must consider the stresses due to bending and transverse shear. Present your results in a table and ensure that your sign convention is clearly shown (and applied consistently!) (3%) b) You have identified…arrow_forward7.82 Water flows from the reservoir on the left to the reservoir on the right at a rate of 16 cfs. The formula for the head losses in the pipes is h₁ = 0.02(L/D)(V²/2g). What elevation in the left reservoir is required to produce this flow? Also carefully sketch the HGL and the EGL for the system. Note: Assume the head-loss formula can be used for the smaller pipe as well as for the larger pipe. Assume α = 1.0 at all locations. Elevation = ? 200 ft 300 ft D₁ = 1.128 ft D2=1.596 ft 12 2012 Problem 7.82 Elevation = 110 ftarrow_forwardHomework#5arrow_forwardA closed-cycle gas turbine unit operating with maximum and minimum temperature of 760oC and 20oC has a pressure ratio of 7/1. Calculate the ideal cycle efficiency and the work ratioarrow_forwardConsider a steam power plant that operates on a simple, ideal Rankine cycle and has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine The thermal efficiency of the cycle,The mass flow rate of the steam and the temperature rise of the cooling waterarrow_forwardTwo reversible heat engines operate in series between a source at 600°C, and a sink at 30°C. If the engines have equal efficiencies and the first rejects 400 kJ to the second, calculate: the temperature at which heat is supplied to the second engine, The heat taken from the source; and The work done by each engine. Assume each engine operates on the Carnot cyclearrow_forwardA steam turbine operates at steady state with inlet conditions of P1 = 5 bar, T1 = 320°C. Steam leaves the turbine at a pressure of 1 bar. There is no significant heat transfer between the turbine and its surroundings, and kinetic and potential energy changes between inlet and exit are negligible. If the isentropic turbine efficiency is 75%, determine the work developed per unit mass of steam flowing through the turbine, in kJ/kgarrow_forwardYou are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrv = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463 rho_l= 610.2 kf/m^3 liquid viscosity= 1.519*10^-4 kg/ ms kinematic viscosity= 2.489*10^-7 m^2/s Cpl= 4745 J/kg C kl=0.4927 W/m Ca)Calculate the surface temperature required to achieve the desired condensation rate of 0.09 kg/s( should be 688 degrees C) b) Show that if you use a bigger vertical plate (2.5 m-wide and 0.8 m-height), the requiredsurface temperature would be now 20 o C. You may use all the properties given as an initialguess. No need to iterate to correct for Tf. c) What if you still want to use small plates because of the space constrains? One way to getaround this problem is to use small…arrow_forwardUsing the three moment theorem, how was A2 determined?arrow_forwardDraw the kinematic diagram of the following mechanismarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY