Nitrogen dioxide,
(a) Using data in Appendix 2, calculate
(b) Calculate
(a)
Interpretation:
The values of
Concept introduction:
Standard Gibbs free energy of a reaction is calculated by subtracting the standard Gibbs free energy of formation of reactants from standard Gibbs free energy of formation of products. The formula for standard Gibbs free energy of reaction is given as,
Where,
•
•
The relation between equilibrium constant and standard Gibbs free energy of reaction is given as,
Where,
•
•
•
Answer to Problem 5.27E
The values of
Explanation of Solution
From Appendix
The standard Gibbs free energy of formation of
The standard Gibbs free energy of formation of
Temperature at the equilibrium is
The given reaction is represented as,
The standard Gibbs free energy of given reaction is given as,
Where,
•
•
Substitute the value of
Therefore, the value
The relation between equilibrium constant and standard Gibbs free energy of reaction is given as,
Where,
•
•
•
Rearrange the above equation form the value of
Substitute the value of
Therefore, the value
The values of
(b)
Interpretation:
The value of
Concept introduction:
The equilibrium constant of a reaction is expressed as the ratio of partial pressure of products and reactants each raised to the power of their stoichiometric coefficients. A typical equilibrium reaction is represented as,
The algebraic form of equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•
Answer to Problem 5.27E
The value of
Explanation of Solution
The initial number of moles of
The volume of the reaction system is
The temperature of the reaction system is
The value
The ideal gas equation is given as,
Where,
•
•
•
•
•
Rearrange the above equation for the value of
Substitute the value of
The table for initial and equilibrium amounts of the substances involved in the reaction is represented as,
The expression forequilibrium constant for the given equilibrium reaction is represented as,
Substitute the value of
Rearrange the equation to form a quadratic equation.
Solve the quadratic equation form the value of
Rearrange equation (1) form the value of
Substitute the value of
The number of mole of
The initial number of mole of
The expression for extent of reaction for
Where,
•
•
•
Substitute the value of
Therefore, the extent of the reaction is
The extent of the reaction is
Want to see more full solutions like this?
Chapter 5 Solutions
EBK PHYSICAL CHEMISTRY
- Hi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forwardHi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forward
- Hi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forwardBriefly explain the following paragraph: both the distortion of symmetry and the fact that the solid is diamagnetic indicate the existence of a Nb-Nb bond.arrow_forwardHi I need help on my practice final, If you could explain how to solve it, offer strategies, and dumb it down that would be amazing.arrow_forward
- -1 2 3 4 5 7 8 At a certain temperature this reaction follows first-order kinetics with a rate constant of 0.0635 s 2C1,0, (g) →2C1, (g)+50, (g) Suppose a vessel contains C1,0, at a concentration of 1.03 M. Calculate how long it takes for the concentration of C1,0, to decrease by 86.0%. You may assume no other reaction is important. Round your answer to 2 significant digits. e х th Earrow_forwardASAP....arrow_forwardNonearrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning