
The tension in each segment of the cable and the vertical distance between points

Answer to Problem 5.1P
The tension in segment
The tension in segment
The tension in segment
The vertical distance between points
Explanation of Solution
Concept Used:
Write the expression for the net moment about end
Here
Calculations:
The free body diagram for the system is shown below.
Figure-(1)
Here, the unknown vertical reactions are
The slope of cable
Write the moment about
Consider
Given
Given that
Therefore
Consider
Apply Pythagoras theorem in
Here, the distance between points
Substitute
Take square root on both sides.
Calculate
Substitute
Calculate
Substitute
Calculate
Substitute
The free body diagram at point C is shown below.
Figure-(2)
Apply Sine Law at point
Here, the tension in cable
Determine
Thus the tension in segment
Thus the tension in segment
Analyze point
Figure-(3)
Apply Angle Sum Property in
Substitute
Calculate
Substitute
Calculate
Substitute
Calculate
Substitute
Consider
Figure-(4)
Calculate the length
Substitute
Calculate
Substitute
Analyze point
The free body diagram for point
Figure-(5)
Substitute
Calculate
Substitute
Calculate
Substitute
Apply Sine Law at point
Here, the tension in cable
Determine
Thus the tension in segment
Conclusion:
The tension in segment
The tension in segment
The tension in segment
The vertical distance between points
Want to see more full solutions like this?
Chapter 5 Solutions
STRUCTURAL ANALYSIS W/MOD MAST
- Funding Plan How much funds required to reach to the next level of the venture? • ? How much have been bootstrapped? If not, why? • ? How much can be bootstrapped? • ? How much external funding required? If not, why? • ? Funds utilization strategy (Details) • ? • ? • ? • ? • ? • ? • • ? ? ? ? ? Place your logo herearrow_forwardA semicircular 40 ft diameter− − tunnel is to be built under a150 ft deep− − , 800 ft long− − lake, as shown below. a) Determine the horizontal, vertical, and resulting hydrostatic forces acting on this tunnel. (Answer: 8 8 8 1.398 10 , 2.596 10 , 2.64 10H y netF lbf F lbf F lbf= × = × = × ) b) Calculate the hydrostatic force on the bottom of the lake if the tunnel was not there, and compare it with the total (resulting) hydrostatic force that you calculated in part (a). (Answer: 8 2.995 10VF lbf= × ) c) As the design engineer of this tunnel would you take the hydrostatic force on the bottom of the lake as a rough estimate of the resulting hydrostatic force acting on this tunnel. Discuss your decision.arrow_forward3.2 Consi parabolic equation (Eq. 3.1) 3.3 Again consider Example 3.4. Does this curve provide sufficient stopping sight distance for a speed of 60 mi/h? -tangent grade with a -1% final mi/h. The station of the 1203 ft. What is the elev 3.4 An equal-tangent crest vertical curve is designed for 70 mi/h. The high point is at elevation 1011.4 ft. The initial grade is +2% and the final grade is -1%. What is the elevation of the PVT? +00? 3.10 An equal-tangent w 2012 (to 2011 AASHTO of 70 mi/h to connec -2.1%. The curve is design speed in th technology has adv design deceleration value used to dev percentage of ol design reaction vehicles have b height is assun roadway obje 3.5 An equal-tangent crest curve has been designed for 70 mi/h to connect a +2% initial grade and a -1% final grade for a new vehicle that has a 3 ft driver's eye height; the curve was designed to avoid an object that is 1 ft high. Standard practical stopping distance design was used but, unlike current design standards,…arrow_forward
- Factor of Safety Activity The lap joint is connected by three 20-mm diameter rivets. Assuming that the applied allowable load, P=50kN is distributed equally among the three rivets and a factor of safety of 1.5, find: (a) the failure shear stress in a rivet, and (b) failure bearing stress between the plate and rivet 25 mm 25 mmarrow_forwardDraw the shear and moment diagrams of the beam CDE showing all calculations. Assume the support at A is a roller and B is a pin. There are fixed connected joints at D and E. Assume P equals 9.6 and w equals 0.36arrow_forwardFind the length of the diagonal on the x-z plane (square root of square of sides). Find angle between the vector F and its projection on x-z (the diagonal defined above). Find Horizontal Projection of F on x-z plane, Fh, and vertical component, FY. Find projections of Fh, to define in-plane components Fx and Fz. Show that results match those of Problem 2(a) above. (2,0,4) F₂ 100 N (5, 1, 1)arrow_forward
- For the control system Draw Nyquist Plot with Solution G(S)= 63.625 (S+1)(S+3) S(S+2)(5+65+18) (5+5)arrow_forwardQ3: Find the support reactions at A: y mm A P=last 2 student's ID#+100 (N) 124N last 3 student's ID# (mm) 724mm 20 mm D B C X last 3 student's ID#+20 mm 744mm 40 mm 60 mmarrow_forwardA hoist trolley is subjected to the three forces shown. Knowing that α = 40°, determine (a) the required magnitude of the force P if the resultant of the three forces is to be vertical, (b) the corresponding magnißide of the resultant. α 724lb last 3 student's ID# lb α last 2 student's ID#+100 lb 124lb Parrow_forward
- Five wood boards are bolted together to form the built-up beam shown in the figure. The beam is subjected to a shear force of V = 13 kips. Each bolt has a shear strength of Vbolt = 6 kips. [h₁ =4.25 in., t₁ = 0.5 in., h₂ = 6 in., t₂ = 1 in.] hi + hi/2 h:/2 h: 2 h + h/2 Determine the moment of inertia of the section. Determine the maximum allowable spacing of the bolts. Determine the shear flow in the section connected by fasteners.arrow_forwardA vessel has a diameter of 1m and 2m high is moving downward with a positive acceleration of 3m/s2. The pressure at the bottom of the liquid is 9.534kPa, determine the mass of the liquid.arrow_forwardYou are the engineer asked to design a rapid sand filtration system for a small water treatment plant. It has the following characteristics: Hydraulic loading rate = 6 m/h Total volumetric flow rate of the plant = 3 MGD Effective filtration rate = 5.8 m/h Production efficiency = 97% Complete (filtration, rinsing, and backwashing) filter cycle duration = 48 h What is the area of your square filtration system? What are the surface dimensions of the filter? What volume of water is needed for backwashing plus rinsing the filter in each rinsing cycle?arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





