Modern Physics For Scientists And Engineers
2nd Edition
ISBN: 9781938787751
Author: Taylor, John R. (john Robert), Zafiratos, Chris D., Dubson, Michael Andrew
Publisher: University Science Books,
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.1P
To determine
To Find: The
Expert Solution & Answer
Answer to Problem 5.1P
Explanation of Solution
Given:
Given
Formula used:
Rydberg formula:
Where R is the Rydberg constant
Calculation:
Conclusion:
Hence, the wavelength is
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
where ?∞ = 1.097 × 10^7 m−1is the Rydberg constant and ? is the atomic number (thenumber of protons found in the nucleus). Calculate the ground state energy of a triplyionised beryllium atom, Be3+ (a beryllium atom with three electrons removed).
Find the energy of the photon released in the transition from n₁ = 6 to n₂ = 1
for a hydrogen atom. (Note: Use Rydberg Formula)
Using the Rydberg formula, find the wavelength of the line in the Balmer series of the hydrogen spectrum for m = 5. The value of Rydberg constant is 1.097 × 107 m–1 and n = 2 for the Balmer series. (Round the final answer to the nearest whole number.)
The wavelength is _______nm.
Chapter 5 Solutions
Modern Physics For Scientists And Engineers
Ch. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10P
Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Prob. 5.21PCh. 5 - Prob. 5.22PCh. 5 - Prob. 5.23PCh. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27P
Knowledge Booster
Similar questions
- The electron, in a hydrogen atom, is in its second excited state. Calculate the wavelength of the lines in the Lyman series, that can be emitted through the permissible transitions of this electron. (Given the value of Rydberg constant, R = 1.1 × 107 m-1 )arrow_forwardAn electron in a hydrogen atom undergoes a transition from an energy level with n=4 to an energy level with n=2. Calculate the energy change (in electron volts) during this transition. Given: Rydberg constant R_H=13.6 eV.arrow_forwardCompute the oscillation frequency of the electron and the expected absorption or emission wavelength in a Thomson- model hydrogen atom. Use R = 0.053 nm.arrow_forward
- Calculate the Rydberg constant for the singleelectron (hydrogen-like) ions of helium, potassium, and uranium. Compare each of them with R∞ and determine the percentage difference.arrow_forwardCalculate the longest wavelength of the photons emitted in the Balmer series of hydrogen spectrum. Which part of the e.m. spectrum, does it belong to? [Given Rydberg constant, R = 1.1 × 107 m-1 ].arrow_forwardThe light observed that is emitted by a hydrogen atom is explained by a simple model of its structure with one proton in its nucleus and an electron bound to it, but only with internal energies of the atom satisfying EH=−RH/n2EH=−RH/n2 where RHRH is the Rydberg constant and nn is an integer such as 1, 2, 3 ... and so on. When a hydrogen atom in an excited state emits light, the photon carries away energy and the atom goes into a lower energy state. Be careful about units. The Rydberg constant in eV is 13.605693009 eV That would be multiplied by the charge on the electron 1.602× 10-19 C to give 2.18× 10-18 J A photon with this energy would have a frequency f such that E=hf. Its wavelength would be λ = c/f = hc/E. Sometimes it is handy to measure the Rydberg constant in units of 1/length for this reason. You may see it given as 109737 cm-1 if you search the web, so be aware that's not joules. The following questions are intended to help you understand the connection between…arrow_forward
- The longest wavelength line of the Balmer Series for hydrogen occurs at 656.3 nm corresponding to the transition from n2 = 3 to n1 = 2. Determine the value for the Rydberg constant for hydrogen using these values.arrow_forwardif the chlorine molecule at 290K were to rotate at the angular frequency predicted by the equipartition theorem what would be the average centipital force ? ( the atoms of Cl are 2 x 10-10 m apart and the mass of the chlorine atom 35.45 a.m.u )arrow_forwardThe energy levels of the Bohr model for the atom can be expressed mathematically as En -13.6 eV, where Z is the atomic number, and n is the quantum number. This model is reasonably accurate for hydrogen and for singly ionized helium. The photon associated with the transition of an electron from the ground state to the first excited state in singly ionized helium has a different wavelength than that associated with a similar transition in hydrogen. Which of the following correctly describes the wavelengths of these two photons in terms of the energy level diagrams for hydrogen and helium? The photon absorbed by hydrogen has a longer wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. B The photon absorbed by hydrogen has a shorter wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. The photon…arrow_forward
- Please only type answerarrow_forwardIf the zirconium atom ground state has S= 1 and L = 3, what are the permissible values of J? Write the spectroscopic notation for these possible values of S, L, and J. Which one of these is likely to represent the ground state?arrow_forwardWhat is the difference in energy between two states (n = 1; n = 2) of the Fe atom that originates this transition? What is the corresponding energy difference for the hydrogen atom? use this equation to calculate the energy difference ΔΕ 327²e}h’n²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning