
Concept explainers
Left thumb rule in levelling.

Explanation of Solution
Left thumb rule is applicable in leveling for the measurement of vertical angles. In order to use the instruments effectively we must follow some of the basic principles.
Most of the latest instruments use three screw leveling head for initial rough leveling. In leveling a three-screw head, the telescope is rotated until it is over two screws that is, horizontal to the two screws, and then by using the thumb and the first finger of each hand in order to adjust the opposite screws simultaneously fixing the bubble approximately at the center (if the left thumb is turned to the left as moving right thumb to right it will turn the bubble towards left, similarly moving left thumb to right and right thumb to left will make the bubble to move towards right). The whole procedure is repeated with the telescope at 90oso that it is over the third remaining screw just opposite the other two. Now, a lot of time gets wasted while adjusting the bubble with the first attempt.A simple rule that assists in centering bubble, as a bubble follows the left thumb rule when turning the screws gets centered by turning the screws one after the other. Furthermore, the inward and outward movement of the foot screws will easily center the instrument and telescope need not to be rotated throughout the process.
Want to see more full solutions like this?
Chapter 5 Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
- 6-1 For the rectangular beam shown in Fig. P6-1, (a) Draw a shear-force diagram. (b) Assuming the beam is uncracked, show the direction of the principal tensile stresses at middepth at points A, B, and C. (c) Sketch, on a drawing of the beam, the inclined cracks that would develop at A, B, and C. 10 kips A B 1 kip/ft 7.5 ft Fig. P6-1 + 7.5 ft 6 ft 10 kipsarrow_forward6.85 A reducing pipe bend is held in place by a pedestal as shown. There are expansion joints at sections 1 and 2, so no force is transmitted through the pipe past these sections. The pressure at section 1 is 20 psig, and the rate of flow of water (p = 62.4 Ibm/ft³) is 2 cfs. Find the force and moment that must be applied at section 3 to hold the bend stationary. Assume the flow is irrotational, and neglect the influence of gravity. 6 in. diameter + 24 in. 24 in. (3 4 in. diameter Problem 6.85arrow_forward6.79 A cart is moving along a railroad track at a constant velocity of 5 m/s as shown. Water (p = 1000 kg/m³) issues from a nozzle at 10 m/s and is deflected through 180° by a vane on the cart. The cross-sectional area of the nozzle is 0.002 m². Calculate the resistive force on the cart. 5 m/s D 10 m/s Nozzle Problem 6.79arrow_forward
- Oil of specific gravity 0.800 acts on a vertical triangular area whose apex is in the oil surface. The triangle is 9 ft high and 12 ft wide. A vertical rectangular area 8 ft high is attached to the 12-ft base of the triangle and is acted upon by water. Find the magnitude and position of the resultant force on the entire area.arrow_forwardWhat types of constraints did Covid-19 cause in duration of activities on different construction projects?arrow_forwardPost-tensioned AASHTO Type III girders are to be used to support a deck with unsupported span equal to 90 feet. One level of Grade 270, 10 x 0.6" Ø 7-wire strand are used to tension the girders. The girder is simply supported at both ends. The anchors are located 2" from the neutral axis at the supports while the eccentricity is measured at 14" at the midspan. Use maximum values for ranges (table values). The tendons are encased in flexible metal sheathing. Assume and loadings are placed immediately after stressing. Determine the stresses at the top and bottom of the beam, including the stress at the level of steel after three years. Given the following parameters: F'c = 5000 psi Fy = 240 ksi (Bonded, Stress-relieved) Fu = 270 ksi = Es 29,000 ksi Ec = 4,030 psi Fj = 235 ksi A = 1x0.6" 07-W.S. = 0.217 in² Yc = 140 lbs/ft³ ΔΑ = 3/8" RH = 33% Superimposed Service Load = 10 kips/ft (excluding self-weight)arrow_forward
- FIG. P5.66 40 kN B 4 m A 20 kN 10 kN/m C 8 m 8 marrow_forward4 m 100 kN 12 kN/m 5 m -1.5 m-1.5 marrow_forwardQ1) Choose the correct answer: 1- Rankine's theory of earth pressure neglect: The pressure on the wall is to act parallel to the surface of the soil at angle (B) to the horizontal. The effect of cohesion on active and passive pressure. The friction developed between a retaining wall and the soil. o The depth of tension zone. o The effect of water table. 2- The lateral earth pressure is the lateral pressure that developed from: o Water beside it. o Soil beside structure. o External loads. o All the above. o Excavation beside structure. 3- The coefficient of earth pressure at rest represented as o Ko-1-sing expression given by Jaky. o Ko-sing 。 Ko-1-cosp о o Ko-cosp 。 Ko" tano 4- If the backfill carries a uniform surcharge q, then the lateral pressure at the depth of wall His: o pa-Ka yz+Ka q o pa Ka yz-Ka q o pa Ka yz*Ka q o pa Ka yz/Ka q 。 pa=Ka yz+q 5- During the active state of plastic equilibrium, the retaining wall moves: o Towards the fill o Away from the fill o Does not change…arrow_forward
- س 1: سم ، خمن كمية الأعمال الترابية اللازمة لتنفيذ جزء من القناة وفقًا للبيانات التالية: عرض القناة = 3م المنحدر الجانبي في الحفر = 1:1 وفي الدفن = 1:1.5 عرض الضفة = 2 م من الجانبين عمق الاملاء الكامل ) full supply depth)= 80 السافة العمودية بين اعلى مستوى للمياه واعلى نقطة في الضفة الجانبية ( free board) = 40 سم، ميل القاعدة = 1:5000 مستوى قاعدة القناة المقترح R.D. (m) 1000 2000 3000 4000 G.L. (m) 210.8 210.4 208.8 208.4 FSD 210= (P.B.L) BANK OF CHANNELarrow_forwardA 8.5 meter simply supported reinforced concrete beam on parallel rectangular column, where the column width is 300 mm is shown in Figure carries a uniformly distributed variable action of 10 kN/m and permanent action of 9 kN/m (including self-weight of beam). The clear cover of beam for class XC-1 is 25 mm, diameter of main and shear reinforcement are 20 mm and 8 mm respectively. The characteristic material strengths are fck = 30 N/mm² and fyk = 500 N/mm². Apply variable Strut Inclination Method to design the shear reinforcement (links) for the beam. h = 370 mm 마 *b = 230 mm Section A-Aarrow_forwardQ2- For the retaining wall shown in the figure, calculate the magnitude and resultant, of active thrust and calculate only the magnitude of passive thrust. q = 10kN/m² 不 2 m y-18 kN/m³ 0=35° C=0 * 2 m y=18 kN/m³ 0=20° 6 m C=15 kN/m² y=18 kN/m³ 0-20° C=15 kN/m² 2arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





