Concept explainers
(a)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is transferred from one container to a large one.
Concept introduction:
Interconversion of physical
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 5.1P
When a sample of gas is transferred from one container to a large one, the volume of the gas increases to the volume of the larger container whereas the volume of the liquid remains constant.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. Due to high kinetic energy, the particles can move randomly so they occupy the volume of the container. On the contrary, liquids have fixed volume due to stronger intermolecular forces between particles compared to gases. When a sample of gas is transferred from one container to a large one, the volume of the gas increases to the volume of the larger container whereas the volume of the liquid remains constant.
(b)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is heated in an expandable container without any change in the state of matter.
Concept introduction:
Interconversion of physical states of matter refers to the application of temperature and pressure to change one physical state of matter into another.
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 5.1P
When a sample of gas is heated in an expandable container without a change of physical state, then the volume of the container will increase whereas the volume of a sample with liquid does not change on heating.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. On the contrary, liquids have fixed volume due to stronger intermolecular forces between particles compared to gases. When a sample of gas is heated in an expandable container without a change of physical state, then the volume of the gas will increase whereas the volume of a sample with liquid does not change on heating.
(c)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is placed in a cylinder with a piston and external force is applied.
Concept introduction:
Interconversion of physical states of matter refers to the application of temperature and pressure to change one physical state of matter into another.
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 5.1P
When a sample of gas is placed in a cylinder with a piston and external force is applied, the volume of the liquid remains constant whereas the volume of the gas is reduced.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. On the contrary, liquids have fixed volume due to stronger intermolecular forces and lesser intermolecular space between particles compared to gases. When a sample of gas is placed in a cylinder with a piston and external force is applied, the volume of the liquid remains constant as liquids are not compressible whereas the volume of the gas is reduced because gases are highly compressible due to large intermolecular distance.
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY:MOLECULAR...V.2 W/ACCESS
- Rel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forwardDraw the following molecule: (Z)-1-chloro-1-butenearrow_forward
- Identify the molecule as having a(n) E, Z, cis, or trans configuration. CH3 H₁₂C ○ E ○ z ○ cis transarrow_forwardIdentify the molecule as having a(n) E, Z, cis, or trans configuration. H₂C- CH3 О Е ○ cis ○ transarrow_forwardThe decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forward
- Don't used hand raitingarrow_forwardCS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forwardCS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forward
- The following is a first order reaction where the rate constant, k, is 6.29 x 10-3 min-*** What is the half-life? C2H4 C2H2 + H2arrow_forwardControl Chart Drawing Assignment The table below provides the number of alignment errors observed during the final inspection of a certain model of airplane. Calculate the central, upper, and lower control limits for the c-chart and draw the chart precisely on the graph sheet provided (based on 3-sigma limits). Your chart should include a line for each of the control limits (UCL, CL, and LCL) and the points for each observation. Number the x-axis 1 through 25 and evenly space the numbering for the y-axis. Connect the points by drawing a line as well. Label each line drawn. Airplane Number Number of alignment errors 201 7 202 6 203 6 204 7 205 4 206 7 207 8 208 12 209 9 210 9 211 8 212 5 213 5 214 9 215 8 216 15 217 6 218 4 219 13 220 7 221 8 222 15 223 6 224 6 225 10arrow_forwardCollagen is used to date artifacts. It has a rate constant = 1.20 x 10-4 /years. What is the half life of collagen?arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781559539418/9781559539418_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)