Concept explainers
(a)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is transferred from one container to a large one.
Concept introduction:
Interconversion of physical
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(a)

Answer to Problem 5.1P
When a sample of gas is transferred from one container to a large one, the volume of the gas increases to the volume of the larger container whereas the volume of the liquid remains constant.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. Due to high kinetic energy, the particles can move randomly so they occupy the volume of the container. On the contrary, liquids have fixed volume due to stronger intermolecular forces between particles compared to gases. When a sample of gas is transferred from one container to a large one, the volume of the gas increases to the volume of the larger container whereas the volume of the liquid remains constant.
(b)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is heated in an expandable container without any change in the state of matter.
Concept introduction:
Interconversion of physical states of matter refers to the application of temperature and pressure to change one physical state of matter into another.
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(b)

Answer to Problem 5.1P
When a sample of gas is heated in an expandable container without a change of physical state, then the volume of the container will increase whereas the volume of a sample with liquid does not change on heating.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. On the contrary, liquids have fixed volume due to stronger intermolecular forces between particles compared to gases. When a sample of gas is heated in an expandable container without a change of physical state, then the volume of the gas will increase whereas the volume of a sample with liquid does not change on heating.
(c)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is placed in a cylinder with a piston and external force is applied.
Concept introduction:
Interconversion of physical states of matter refers to the application of temperature and pressure to change one physical state of matter into another.
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(c)

Answer to Problem 5.1P
When a sample of gas is placed in a cylinder with a piston and external force is applied, the volume of the liquid remains constant whereas the volume of the gas is reduced.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. On the contrary, liquids have fixed volume due to stronger intermolecular forces and lesser intermolecular space between particles compared to gases. When a sample of gas is placed in a cylinder with a piston and external force is applied, the volume of the liquid remains constant as liquids are not compressible whereas the volume of the gas is reduced because gases are highly compressible due to large intermolecular distance.
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY:MOLECULAR...(LL) W/ALEKS
- If a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward(a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forward
- Draw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forwardChoose the right answerarrow_forward8. What is the major product of the following reaction? KMnO4 b a TOH OH OH C d OH "OH HO OH OHarrow_forward
- Choose the right answerarrow_forward3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward7. Provide the product(s), starting material(s) and/or condition(s) required for the No mechanisms required. below reaction HO + H-I CI FO Br2, FeBr3 O I-Oarrow_forward
- 6. Design the most efficient synthesis of the following product starting from phenot Provide the reaction conditions for each step (more than one step is required) and explain the selectivity of each reaction. NO MECHANISMS ARE REQUIRED. OH step(s) CIarrow_forwardWhat is the skeletal structure of the product of the following organic reaction?arrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax




