Concept explainers
(a)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the sample is transferred from one container to a larger one is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
(a)

Answer to Problem 5.1P
The volume of the liquids has definite volume while the volume of gases doesn’t have a fixed volume. This is so because the volume of gas is dependent on the volume of the containers.
Explanation of Solution
The molecule of the gas moves more freely than the solid and liquids. The gas doesn’t have a definite shape and volume. The liquids have a definite volume but don’t have a fixed shape.
The volume of the gas is dependent on the volume of the containers, the volume of gas is increased as the volume of the containers increases while the liquids have fixed volume. This is so because the intermolecular forces between the gaseous molecules are weaker so, the molecules are move very fast than liquids molecules.
The volume of gases doesn’t have a fixed volume but the volume of liquids have a definite volume.
(b)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the sample heated in an expandable container is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The volume of the gas is dependent on the temperature, as the temperature increases the volume increase.
(b)

Answer to Problem 5.1P
If the sample of gas is rapidly heated in the expandable container, the volume of the gas is increased but the volume of the liquids molecule will be the same.
Explanation of Solution
The gas volume will be changed significantly with temperature. When a sample of gas is rapidly heated, the volume of expandable containers having the gas is increased. This is so because the speed of the molecule is increased and result in more collision on the wall of the container. More the collisions on the container wall, more will be the pressure exerted by the gas particles. This results to increase the volume of the gas.
When a sample of liquid is rapidly heated, the volume of expandable containers having liquids will not be changed.
As temperature increases, the volume of expandable containers having the gas is increased.
(c)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the external force applied to the piston of an expandable container is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The volume of the gas is inversely proportional to the pressure, as the pressure increases the volume decrease.
(c)

Answer to Problem 5.1P
As the pressure increases, the volume of the gas decreases while the volume of the liquid will be the same.
Explanation of Solution
The gas volume will be changed significantly with pressure. The sample of gas is present in the cylinder with a piston, as the external force applied on the piston increases, the volume of gas decreases. This is so because gases are compressible. As the pressure increases, the volume of the liquids doesn’t change because the liquids are incompressible.
Gases are compressible and the liquids are incompressible.
Want to see more full solutions like this?
Chapter 5 Solutions
CHEM 212:STUDENT SOLUTION MANUAL
- 10. The most important reason why Br- is a better nucleophile than Cl-is ___. A. polarizability; B. size; C. solvation; D. basicity; E. polarity. Please include all steps. Thanks!arrow_forwardPredicting the qualitative acid-base properties of salts Consider the following data on some weak acids and weak bases: base acid Ка K₁₁ name formula name formula nitrous acid HNO2 4.5×10 4 pyridine CHEN 1.7 × 10 9 4 hydrofluoric acid HF 6.8 × 10 methylamine CH3NH2 | 4.4 × 10¯ Use this data to rank the following solutions in order of increasing pH. In other words, select a '1' next to the solution that will have the lowest pH, a '2' next to the solution that will have the next lowest pH, and so on. solution 0.1 M NaNO2 0.1 M KF pH choose one v choose one v 0.1 M C5H5NHBr 0.1 M CH3NH3CI choose one v ✓ choose one 1 (lowest) 2 ☑ 3 4 (highest) 000 18 Ararrow_forward4. The major product from treatment of 2-propanol with the Jonesreagent is ___.A. acetone; B. none of the other answers is correct C. propene; D.propanoic acid; E carbon dioxide. Please include all steps! Thank you!arrow_forward
- 7. All of the following compounds that are at the same oxidation levelare ___.u. methyl epoxide, v. propyne, w. propanal, x. propene,y. 2,2-dihydroxypropane, z. isopropanol?A. u,v,w,y; B. u,v,w; C. v,w,y,z; D. v, z; E. x,y,z Please include all steps. Thank you!arrow_forward9. Which one of the following substituents is the worst leaving group inan SN2 reaction? A. -NH2; B. -OH; C. –F; D. NH3; E. H2O Please include all steps. Thanks!arrow_forwardUsing the general properties of equilibrium constants At a certain temperature, the equilibrium constant K for the following reaction is 2.5 × 105: CO(g) + H2O(g) CO2(g) + H2(g) Use this information to complete the following table. Suppose a 7.0 L reaction vessel is filled with 1.7 mol of CO and 1.7 mol of H2O. What can you say about the composition of the mixture in the vessel at equilibrium? What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. CO2(9)+H2(g) CO(g)+H₂O(g) What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 3 CO(g)+3H2O(g) = 3 CO2(g)+3H2(g) There will be very little CO and H2O. x10 There will be very little CO2 and H2. 000 Neither of the above is true. K = ☐ K = ☐ 18 Ararrow_forward
- 8. When ethane thiol is treated with hydrogen peroxide the product is___.A. ethane disulfide; B. diethyl sulfide; C. ethane sulfoxide; D. ethanesulfate; E. ethyl mercaptan. Please include all steps. Thanks!arrow_forward5. The major product of the three step reaction that takes place when 1-propanol is treated with strong acid is?A. dipropyl ether; B. propene; C. propanal; D. isopropyl propyl ether;E. 1-hexanol Please include all steps. Thank you!arrow_forward6. The formula of the product of the addition of HCN to benzaldehydeis ___.A. C8H7NO; B. C8H6NO; C. C14H11NO; D. C9H9NO; E. C9H8NO Please include all steps. Thank you!arrow_forward
- Predicting the qualitative acid-base properties of salts Consider the following data on some weak acids and weak bases: base acid K K a name formula name formula nitrous acid HNO2 4.5×10 hydroxylamine HONH2 1.1 × 10 8 hypochlorous acid HCIO 8 3.0 × 10 methylamine CH3NH2 | 4.4 × 10¯ 4 Use this data to rank the following solutions in order of increasing pH. In other words, select a '1' next to the solution that will have the lowest pH, a '2' next to the solution that will have the next lowest pH, and so on. 0.1 M KCIO solution PH choose one 0.1 M NaNO2 0.1 M CH3NH3Br 0.1 M NaBr choose one ✓ choose one v ✓ choose one 1 (lowest) ☑ 2 3 4 (highest)arrow_forwardFor this Orgo problem, don't worry about question 3 below it. Please explain your thought process, all your steps, and also include how you would tackle a similar problem. Thank you!arrow_forwardUsing the general properties of equilibrium constants At a certain temperature, the equilibrium constant K for the following reaction is 0.84: H2(g) + 2(g) 2 HI(g) = Use this information to complete the following table. Suppose a 34. L reaction vessel is filled with 0.79 mol of HI. What can you say about the composition of the mixture in the vessel at equilibrium? There will be very little H2 and 12. ☐ x10 There will be very little HI. Neither of the above is true. What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 2 HI(g) H₂(9)+12(9) K = What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 2 H2(g)+212(9) 4 HI(g) K = ☐ ☑arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





