Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
7th Edition
ISBN: 9780072848236
Author: Warren McCabe, Julian C. Smith, Peter Harriott
Publisher: McGraw-Hill Companies, The
Question
Book Icon
Chapter 5, Problem 5.19P

(a)

Interpretation Introduction

Interpretation:

The maximum flow rate through a fire hose for a pump is to be determined.

Concept Introduction:

The flow rate through the fire hose is given as,

  Q=A×V¯Q=π4D2V¯....... (1)

The notations used here are,

D = Diameter of the fire hose

  V¯ = Average velocity of the fluid

The average velocity can be calculated from the pressure drop of the fluid,

  ΔP=2fLρV¯2Dg ....... (2)

The notations used here are,

  ΔP = Pressure drop in the fluid

g = Acceleration due to gravity

f = Fanning friction factor

  ρ = Density of the fluid

L = Length of the duct

The Reynolds number is given as,

  Re = ρV¯Dμ ....... (3)

The notations used here are,

  V¯ = Average velocity of the fluid

D = Diameter of duct

  μ = Viscosity of the fluid

  ρ = Density of fluid

The roughness parameter is given as, kD where k is roughness of the pipe. It shows how much friction is present in the pipe and with the help of the roughness parameter, f can be calculated from the friction factor chart.

(b)

Interpretation Introduction

Interpretation:

The increase in flow is to be determined due to contamination by ethylene oxide.

Concept Introduction:

The change in friction factor determines the change in flow rate as it depends on the average velocity keeping other factors constant.

Thus,

The flow rate through the fire hose is given as,

  Q=A×V¯Q=π4D2V¯....... (1)

The notations used here are,

D = Diameter of the fire hose

  V¯ = Average velocity of the fluid

The average velocity can be calculated from the pressure drop of the fluid,

  ΔP=2fLρV¯2Dg ....... (2)

The notations used here are,

  ΔP = Pressure drop in the fluid

g = Acceleration due to gravity

f = Fanning friction factor

  ρ = Density of the fluid

L = Length of the duct

Combining equation (1) and (2), it can be deduced that,

  Qα1f ....... (3)

Blurred answer
Students have asked these similar questions
A steam boiler or steam generator is a device used to produce steam by transferring heat to water. In our case, the combustion chamber is fueled with propane (C3H8) at a flowrate of 50.0 mol/h in an excess air of 50%. Assume that both propane and air are fed at 25ºC and the combustion gases leave the chamber at 200ºC. Pressure can be assumed to be atmospheric.* Determine: 1. The heat obtained assuming complete combustion. Compare the results using elements or compounds 2. The steam flowrate that could be generated if the heat is directed to obtain superheated steam at 2 bar and 160ºC from saturated liquid water at this pressure solve
In a surface coating operation, a polymer (plastic) dissolved in liquid acetone is sprayed on a solid surface and a stream of hot air is then blown over the surface, vaporizing the acetone and leaving a residual polymer film of uniform thickness. Because environmental standards do not allow discharg- ing acetone into the atmosphere, a proposal to incinerate the stream is to be evaluated. The proposed process uses two parallel columns containing beds of solid particles. The air– acetone stream, which contains acetone and oxygen in stoichiometric proportion, enters one of the beds at 1500 mm Hg absolute at a rate of 1410 standard cubic meters per minute. The particles in the bed have been preheated and transfer heat to the gas. The mixture ignites when its temperature reaches 562 C, and combustion takes place rapidly and adiabatically. The combustion products then pass through and heat the particles in the second bed, cooling down to 350 C in the process. Period- ically the flow is…
Propane is burned completely with excess oxygen. The product gas contains 24.5 mole% CO2, 6.10% CO, 40.8% H2O, and 28.6% O2. (a) Calculate the percentage excess O2 fed to the furnace. (b) A student wrote the stoichiometric equation of the combustion of propane to form CO2 and CO as: 2C3H8 + 11O2 → 3CO2 + 3CO + 8H2O     According to this equation, CO2 and CO should be in a ratio of 1/1 in the reaction products, but in the product gas of Part (a) they are in a ratio of 24.8/6.12. Is that result possible? (Hint: Yes.) Explain how
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The