Concept explainers
Three flasks (a)–(c) contain gases A (red) and B (green). (i) If the pressure in (a) is 4.0 atm, what are the pressures in (b) and (c)? (ii) Calculate the total pressure and partial pressure of each gas after the valves are opened. The volumes of (a) and (c) are 4.0 L each and that of (b) is 2.0 L. The temperature is the same throughout.
(a)
Interpretation:
The pressures in valves (b) and (c) has to be calculated.
Answer to Problem 5.168QP
The partial pressures in valves (b) and (c) is
Explanation of Solution
Bulb (b) contains the same number of particles as (a), but is half the volume. The pressure will be double that of A.
The volume of bulb (c) is the same as bulb (a), but there are
(b)
Interpretation:
The total pressure and partial pressure of each gas after the valves are opened has to be calculated.
Answer to Problem 5.168QP
The total pressure in the container is the sum of the partial pressures is
The partial pressure is
Explanation of Solution
The valves are opened at constant temperature, the gases expand to fill the entire container. In bulb (a), the pressure before opening the valve is
Given data,
Given data,
Given data,
The total pressure in the container is the sum of the partial pressures
There are 15 particles of gas A and 15 particles of gas B in the container. Therefore, the partial pressure of each gas will be half the total pressure of
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY-ALEKS 360 ACCESS
- Don't used Ai solutionarrow_forwardLet's see if you caught the essentials of the animation. What is the valence value of carbon? a) 4 b) 2 c) 8 d) 6arrow_forwardA laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forward
- A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forwardThe number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?arrow_forwardFor the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning