University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.14E
Three sleds are being pulled horizontally on frictionless horizontal ice using horizontal ropes (Fig. E5.14). The pull is of magnitude 190 N. Find (a) the acceleration of the system and (b) the tension in ropes A and B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4.4 · A man is dragging a Figure E4.4
trunk up the loading ramp of a
mover's truck. The ramp has
a slope angle of 20.0°, and the
man pulls upward with a force
É whose direction makes an
angle of 30.0° with the ramp
(Fig. E44). (a) How large a
force F is necessary for the
component F, parallel to the
ramp to be 60.0 N? (b) How large will the component Fy perpendi-
cular to the ramp then be?
30,00
20.00
You are designing a high-speed elevator for a new skyscraper. The elevator will have a mass limit of 2400 kg (including passengers). For passenger comfort, you choose the maximum ascent speed to be 18.0 m/s, the maximum descent speed to be 10.0 m/s, and the maximum acceleration magnitude to be 5.00 m/s2. Ignore friction.
What is the maximum upward force that the supporting cables exert on the elevator car?
You are designing a high-speed elevator for a new skyscraper. The elevator will have a mass limit of 2400 kg (including passengers). For passenger comfort, you choose the maximum ascent speed to be 18.0 m/s, the maximum descent speed to be 10.0 m/s, and the maximum acceleration magnitude to be 3.30 m/s2. Ignore friction.
(a)What is the maximum upward force that the supporting cables exert on the elevator car?
(b)What is the minimum upward force that the supporting cables exert on the elevator car?
Chapter 5 Solutions
University Physics (14th Edition)
Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...
Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
53. Which tends to be larger: a star or a nebula? Which tends to be denser? Which tends to be easier to see in ...
Conceptual Physical Science (6th Edition)
Convert the following to SI units: (a) 55 mi/h: (b) 40.0 km/h; (c) 1 week (take that 1 as an exact number); (d)...
Essential University Physics: Volume 1 (3rd Edition)
A plane electromagnetic wave of frequency 20 GHz moves in the positive y-axis direction such that its electric ...
University Physics Volume 2
58. A tandem (two-person) bicycle team must overcome a force of 165 N to maintain a speed of 9.00 m/s. Find the...
College Physics (10th Edition)
36.14 Monochromatic light of wavelength ? = 620 nm from a distant source passes through a slit 0.450 mm wide. T...
University Physics with Modern Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 37.00 (a) Find the tension in each cable supporting the 6.00 × 10²-N cat burglar in Figure P4.35. (b) Suppose the hori- zontal cable were reattached higher up on the wall. Would the tension in the other cables increase, decrease, or stay the same? Why? 600 N Figure P4.35arrow_forwardYou are designing a high-speed elevator for a new skyscraper. The elevator will have a mass limit of 2400 kg (including passengers). For passenger comfort, you choose the maximum ascent speed to be 18.0 m/s, the maximum descent speed to be 10.0 m/s, and the maximum acceleration magnitude to be 3.30 m/s2. Ignore friction. (a)What is the maximum upward force that the supporting cables exert on the elevator car? ___kN (b)What is the minimum upward force that the supporting cables exert on the elevator car? ____kNarrow_forwardYou are designing a high-speed elevator for a new skyscraper. The elevator will have a mass limit of 2400 kg (including passangers). For passenger comfort, you choose the maximum ascent speed to be 18.0 m/s, the maximum descent speed to be 10.0 m/s, and the maximum acceleration magnitude to be 3.20 m/s^2. Ignore friction. What is the maximum upward force that the supporting cables exert on the elevator car? What is the minimum upward force that the supporting cables exert on the elevator car? What is the minimum time it will take the elevator to ascend from the lobby to the observation deck, a vertical displacement of 640 m? What is the maximum value of a 60.0 kg passanger's apparent weight during the ascent? What is the minimum value of 60.0 kg passenger's apparent weight during the ascent? What is the minimum time it will take the elevator to descend to the lobby from the observation deck, a vertical displacement of 640 m?arrow_forward
- a) Find the tension in each cable supporting the 6.00×102−N6.00×102−N cat burglar in Figure P4.35.P4.35. (b) Suppose the horizontal cable were reattached higher up on the wall. Would the tension in the other cables increase, decrease, or stay the same? Why?arrow_forwardANSWER NO. 17 ONLYarrow_forward4.57 CP Two boxes, A and B, are connected to each end of a light vertical rope, as shown in Fig. P4.57. A constant upward force F = 80.0 N is applied to box A. Starting from rest, box B descends 12.0 m in 4.00 s. The tension in the rope connecting the two boxes is 36.0 N. (a) What is the mass of box B? (b) What is the mass of box A?arrow_forward
- In the figure, a tin of anti-oxidants (m, magnitude F = 6.3 N acts on the corned beef tin, which has a downward acceleration of 4.0 m/s2. What are (a) the tension in the connecting cord and (b) angle B? 4.4 kg) on a frictionless inclined surface is connected to a tin of corned beef (m, = 2.2 kg). The pulley is massless and frictionless. An upward force of (a) Number Units (b) Number Unitsarrow_forwardAn elevator cab that weighs 21.6 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of 1.05 m/s2 and (b) decreasing at a rate of 1.05 m/s2?arrow_forwardQuestion 4.5a: The figure shows two blocks of wood connected by a light string. The first block has mass m₂ = 5.50 kg and the second block has mass m₂ = 2.40 kg. A constant horizontal force of magnitude P = 22.0 N acts on the first block and both blocks are sliding to the right. The coefficient of kinetic friction between each block and the horizontal surface is μ = 0.100. Determine the magnitude of the tension 7 in the string connecting the blocks. N Q Question 4.5b: Two blocks with masses m₁ = 3.00 kg and m₂ = 7.30 kg are connected by a light string, as in the figure. Mass m, is descending and mass m, is moving to the right across a horizontal surface with a coefficient of kinetic friction given by μ = 0.165. m₂ T= Determine the acceleration a of m, and the magnitude T of the tension in the string. m/s² N Qarrow_forward
- You are pulling a 32 kg dresser up a ramp (inclined at an angle of 22 degrees) with an acceleration of 3.4 m/s^2. If the coefficient of friction between the dresser and the ramp is 0.44, what is the tension in the rope, assuming it is being pulled horizontal to the ramp?arrow_forwardA 201-kg log is pulled up a ramp by means of a rope that is parallel to the surface of the ramp. The ramp is inclined at 30.0 degrees with respect to the horizontal. The coefficient of kinetic friction between the log and the ramp is 0.810, and the log has an acceleration of 0.700 m/s2. Find the tension in the rope.arrow_forwardFind the tensions in the two cords and the accelerations of the blocks in Fig.P4.11 if the friction is negligible. The pulleys are massless and frictionless, m1= 200 g, m2= 500 g, m3= 400 g.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY