ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
13th Edition
ISBN: 9781264070077
Author: Chang
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.134QP
Interpretation Introduction
Interpretation:
The relative humidity has to be determined with the given conditions.
Concept Introduction:
Relative Humidityis expressed in percent of the quantity of atmospheric moisture relative to the quantity that would be there if the air were flooded. Given that the latter amount is dependent on temperature;comparative humidityis a purpose of both moisture content and temperature.
- The pressure exerted by an individual gas in a mixture is known as itspartial pressure.
- Assuming we have a mixture of ideal gases, we can use the
ideal gas law to solve problems involving gases in a mixture. - Dalton's law of partial pressure states that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Humidity is the percentage of partial pressure of water in air over the total possible water in the air. On the first day of the spring semester the humidity was 72%, but it did not feel humid outside. Calculate the partial pressure of water in air at this time and justify why it did not feel humid. You may find it helpful to compare the first day of the spring semester to the first day of the fall semester, where the humidity was 89% on the first day of class.
Please explain the differences between Absolute Humidity and Specific Humidity when it comes to the presence/potential presence of Water Vapor in the Earth's Atmosphere, and what Volume and Mass have to do with it?
A student experimentally determines the gas law constant, R, by reacting a small piece of
magnesium with excess hydrochloric acid and then collecting the hydrogen gas over water
in a eudiometer. Based on experimentally collected data, the student calculates R to equal
L'atm
0.0832
mol·K
L'atm
Ideal gas law constant from literature: 0.08206
mol·K
(a) Determine the percent error for the student's R-value.
Percent error =|1.389
(b) For the statements below, identify the possible source(s) of error for this student's trial.
The student uses the barometric pressure for the lab to calculate R.
The student does not equilibrate the water levels within the eudiometer and the
beaker at the end of the reaction. The water level in the eudiometer is 1-inch
above the water level in the beaker.
The student does not clean the zinc metal with sand paper.
The student notices a large air bubble in the eudiometer after collecting the
hydrogen gas, but does not dislodge it.
Chapter 5 Solutions
ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
Ch. 5.2 - Prob. 1PECh. 5.2 - Prob. 2PECh. 5.2 - Express 1184 torr in units of mmHg, atm, and kPa.Ch. 5.2 - Rank the following pressures from lowest to...Ch. 5.2 - Prob. 3RCFCh. 5.3 - A gas occupies a volume of 2.50 L at 375 mmHg....Ch. 5.3 - Prob. 2RCFCh. 5.3 - What volume of ClF3 will be produced when 75.0 mL...Ch. 5.4 - Calculate the volume (in liters) occupied by 2.12...Ch. 5.4 - Prob. 4PE
Ch. 5.4 - A sample of chlorine gas occupies a volume of 946...Ch. 5.4 - Prob. 6PECh. 5.4 - A gas initially at 4.0 L, 1.2 atm, and 66C...Ch. 5.4 - What is the density (in g/L) of uranium...Ch. 5.4 - Prob. 9PECh. 5.4 - Prob. 10PECh. 5.4 - Prob. 1RCFCh. 5.4 - Prob. 2RCFCh. 5.4 - Prob. 3RCFCh. 5.5 - Prob. 11PECh. 5.5 - The equation for the metabolic breakdown of...Ch. 5.5 - Prob. 13PECh. 5.5 - Zinc metal reacts with hydrochloric acid according...Ch. 5.5 - Prob. 2RCFCh. 5.6 - Prob. 14PECh. 5.6 - Prob. 15PECh. 5.6 - Prob. 1RCFCh. 5.6 - Prob. 2RCFCh. 5.6 - Prob. 3RCFCh. 5.7 - Prob. 16PECh. 5.7 - Prob. 17PECh. 5.7 - Prob. 1RCFCh. 5.7 - Prob. 2RCFCh. 5.8 - Using the data shown in Table 5.4, calculate the...Ch. 5.8 - Prob. 1RCFCh. 5.8 - Prob. 2RCFCh. 5 - Prob. 5.1QPCh. 5 - Prob. 5.2QPCh. 5 - Prob. 5.3QPCh. 5 - Prob. 5.4QPCh. 5 - Prob. 5.5QPCh. 5 - Prob. 5.6QPCh. 5 - Prob. 5.7QPCh. 5 - Prob. 5.8QPCh. 5 - Prob. 5.9QPCh. 5 - Prob. 5.10QPCh. 5 - Prob. 5.11QPCh. 5 - Prob. 5.12QPCh. 5 - Convert 562 mmHg to atm.Ch. 5 - Prob. 5.14QPCh. 5 - Prob. 5.15QPCh. 5 - A gaseous sample of a substance is cooled at...Ch. 5 - Consider the following gaseous sample in a...Ch. 5 - Prob. 5.19QPCh. 5 - Prob. 5.20QPCh. 5 - Prob. 5.21QPCh. 5 - A sample of air occupies 3.8 L when the pressure...Ch. 5 - Prob. 5.23QPCh. 5 - Under constant-pressure conditions a sample of...Ch. 5 - Ammonia burns in oxygen gas to form nitric oxide...Ch. 5 - Molecular chlorine and molecular fluorine combine...Ch. 5 - Prob. 5.27QPCh. 5 - Prob. 5.28QPCh. 5 - Prob. 5.29QPCh. 5 - Prob. 5.30QPCh. 5 - Prob. 5.31QPCh. 5 - Given that 6.9 moles of carbon monoxide gas are...Ch. 5 - What volume will 5.6 moles of sulfur hexafluoride...Ch. 5 - Prob. 5.34QPCh. 5 - Prob. 5.35QPCh. 5 - Prob. 5.36QPCh. 5 - Prob. 5.37QPCh. 5 - Prob. 5.38QPCh. 5 - An ideal gas originally at 0.85 atm and 66C was...Ch. 5 - Prob. 5.40QPCh. 5 - Prob. 5.41QPCh. 5 - Dry ice is solid carbon dioxide. A 0.050-g sample...Ch. 5 - Prob. 5.43QPCh. 5 - At 741 torr and 44C, 7.10 g of a gas occupy a...Ch. 5 - Ozone molecules in the stratosphere absorb much of...Ch. 5 - Prob. 5.46QPCh. 5 - A 2.10-L vessel contains 4.65 g of a gas at 1.00...Ch. 5 - Calculate the density of hydrogen bromide (HBr)...Ch. 5 - A certain anesthetic contains 64.9 percent C, 13.5...Ch. 5 - A compound has the empirical formula SF4. At 20C,...Ch. 5 - Prob. 5.51QPCh. 5 - The density of a mixture of fluorine and chlorine...Ch. 5 - Consider the formation of nitrogen dioxide from...Ch. 5 - Methane, the principal component of natural gas,...Ch. 5 - When coal is burned, the sulfur present in coal is...Ch. 5 - In alcohol fermentation, yeast converts glucose to...Ch. 5 - Prob. 5.57QPCh. 5 - A quantity of 0.225 g of a metal M (molar mass =...Ch. 5 - What is the mass of the solid NH4Cl formed when...Ch. 5 - Prob. 5.60QPCh. 5 - Prob. 5.61QPCh. 5 - Ethanol (C2H5OH) burns in air:...Ch. 5 - (a) What volumes (in liters) of ammonia and oxygen...Ch. 5 - Prob. 5.64QPCh. 5 - Prob. 5.65QPCh. 5 - A sample of air contains only nitrogen and oxygen...Ch. 5 - A mixture of gases contains 0.31 mol CH4, 0.25 mol...Ch. 5 - A 2.5-L flask at 15C contains a mixture of N2, He,...Ch. 5 - Dry air near sea level has the following...Ch. 5 - Prob. 5.70QPCh. 5 - Prob. 5.71QPCh. 5 - A sample of zinc metal reacts completely with an...Ch. 5 - Prob. 5.73QPCh. 5 - A sample of ammonia (NH3) gas is completely...Ch. 5 - Prob. 5.75QPCh. 5 - The volume of the box on the right is twice that...Ch. 5 - Prob. 5.78QPCh. 5 - Prob. 5.79QPCh. 5 - Prob. 5.80QPCh. 5 - Compare the root-mean-square speeds of O2 and UF6...Ch. 5 - Prob. 5.82QPCh. 5 - The average distance traveled by a molecule...Ch. 5 - At a certain temperature the speeds of six gaseous...Ch. 5 - Prob. 5.85QPCh. 5 - The 235U isotope undergoes fission when bombarded...Ch. 5 - Prob. 5.87QPCh. 5 - Prob. 5.88QPCh. 5 - Prob. 5.90QPCh. 5 - (a) A real gas is introduced into a flask of...Ch. 5 - Using the data shown in Table 5.4, calculate the...Ch. 5 - Prob. 5.94QPCh. 5 - Prob. 5.95QPCh. 5 - Prob. 5.96QPCh. 5 - Prob. 5.97QPCh. 5 - Prob. 5.98QPCh. 5 - When ammonium nitrite (NH4NO2) is heated, it...Ch. 5 - The percent by mass of bicarbonate (HCO3) in a...Ch. 5 - Prob. 5.101QPCh. 5 - Prob. 5.102QPCh. 5 - Prob. 5.103QPCh. 5 - A healthy adult exhales about 5.0 102 mL of a...Ch. 5 - Prob. 5.105QPCh. 5 - Prob. 5.106QPCh. 5 - Some commercial drain cleaners contain a mixture...Ch. 5 - The volume of a sample of pure HCl gas was 189 mL...Ch. 5 - Prob. 5.109QPCh. 5 - Prob. 5.110QPCh. 5 - Prob. 5.111QPCh. 5 - Prob. 5.112QPCh. 5 - Prob. 5.113QPCh. 5 - Prob. 5.114QPCh. 5 - Prob. 5.115QPCh. 5 - Prob. 5.116QPCh. 5 - Prob. 5.117QPCh. 5 - Commercially, compressed oxygen is sold in metal...Ch. 5 - Prob. 5.119QPCh. 5 - Prob. 5.120QPCh. 5 - Prob. 5.121QPCh. 5 - Prob. 5.122QPCh. 5 - Prob. 5.123QPCh. 5 - Prob. 5.124QPCh. 5 - Prob. 5.125QPCh. 5 - Prob. 5.126QPCh. 5 - Prob. 5.127QPCh. 5 - Prob. 5.128QPCh. 5 - Acidic oxides such as carbon dioxide react with...Ch. 5 - Prob. 5.130QPCh. 5 - Prob. 5.131QPCh. 5 - Prob. 5.132QPCh. 5 - Atop Mt. Everest, the atmospheric pressure is 210...Ch. 5 - Prob. 5.134QPCh. 5 - Prob. 5.135QPCh. 5 - Prob. 5.136QPCh. 5 - Prob. 5.137QPCh. 5 - Prob. 5.138QPCh. 5 - Prob. 5.139QPCh. 5 - Prob. 5.140QPCh. 5 - Prob. 5.141QPCh. 5 - Prob. 5.142QPCh. 5 - Prob. 5.143QPCh. 5 - Prob. 5.144QPCh. 5 - Prob. 5.145QPCh. 5 - At what temperature will He atoms have the same...Ch. 5 - Prob. 5.148QPCh. 5 - Prob. 5.149QPCh. 5 - Prob. 5.150QPCh. 5 - Prob. 5.151QPCh. 5 - Prob. 5.152QPCh. 5 - Prob. 5.153QPCh. 5 - A 6.11-g sample of a Cu-Zn alloy reacts with HCl...Ch. 5 - Prob. 5.155QPCh. 5 - Prob. 5.156QPCh. 5 - Prob. 5.157QPCh. 5 - A mixture of methane (CH4) and ethane (C2H6) is...Ch. 5 - Prob. 5.159QPCh. 5 - One way to gain a physical understanding of b in...Ch. 5 - Use the van der Waals constants in Table 5.4. to...Ch. 5 - Prob. 5.162QPCh. 5 - Prob. 5.163QPCh. 5 - Prob. 5.164QPCh. 5 - Referring to Figure 5.17, we see that the maximum...Ch. 5 - Prob. 5.166QPCh. 5 - A gaseous hydrocarbon (containing C and H atoms)...Ch. 5 - Three flasks (a)(c) contain gases A (red) and B...Ch. 5 - Prob. 5.169QPCh. 5 - Prob. 5.170QPCh. 5 - In 2012, Felix Baumgartner jumped from a balloon...Ch. 5 - Prob. 5.172QPCh. 5 - A flask with a volume of 14.5 L contains 1.25...Ch. 5 - Prob. 5.174QPCh. 5 - Prob. 5.175QPCh. 5 - Prob. 5.176QPCh. 5 - Prob. 5.177QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- In the discussion on the composition of air, mention is made of the fact that water vapor may have a concentration as high as 40,000 ppm. Calculate the partial pressure exerted by water vapor at this concentration. Assume that this represents a situation with 100% humidity. What temperature would be needed to achieve this value? (See Appendix G.)arrow_forwardHow does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardEach sketch below shows a flask with some gas and a pool of mercury in it. The gas is at a pressure of 0.5 atm. A J-shaped tube is connected to the bottom of the flask, and the mercury can freely flow in or out of this tube. (You can assume that there is so much more mercury in the pool than can fit into the tube that even if the J-tube is completely filled, the level of mercury in the pool won't change.) Notice also that in the left sketch the J-tube is open at its other end, so that air from the atmosphere can freely flow. On the other hand, in the right sketch the J-tube is closed at its other end, and you should assume there is no gas between the mercury and the closed end of the tube. To answer this question, you must decide what the mercury level will be when the mercury finally stops flowing in or out of the tube. By moving the sliders back and forth, you'll see different levels of mercury in the J-tube. Select the final correct level for each sketch. A open tube closed tube -…arrow_forward
- To prevent tank rupture during deep-space travel, an engineering team is studying the effect of temperature on gases confined to small volumes. What is the pressure of 2.00 molmol of gas DD measured at 251 ∘C∘C in a 1.75-LL container assuming ideal behavior?arrow_forwardA clean, dry and open empty flask is being heated in a water bath. Under which conditions before or after heating does the flask contain more gas molecules? Explain. The flask in problem 1 is allowed to cool back to room temperature. Account for the volume occupied by the gas and the number of gas molecules when the gas is cooled to room temperature. Why is it necessary to immerse the flask both in hot and cold water for 5 minutes before taking the temperature? The water levels inside and outside the flask when it was submerged in cold bath must be equal before the flask is removed. Explain. Name the factors that contributed to the difference between the measured and the computed values of the horizontal displacement (R). Show that during the motion of a simple pendulum the work done by the tension on the string is zero. Show that when a body of mass m is dropped from a height h, the sum of its kinetic and potential energies is constant at any instant and is equal to mgh. How much…arrow_forwardDetermine the total pressure in the flask when 1.02 atm of Oz is added to a 1.95 L flask containing 145 mL ethanol (CH3CH2OH). The density of ethanol is 703.00 kg/m. The temperature remains at 100 °C throughout the reaction. Note that the total pressure is calculated by adding up the pressure of ALL gases (O2, CO2, and H2O in this case).arrow_forward
- For many purposes we can treat propane (C₂H) as an ideal gas at temperatures above its boiling point of −42. °C. Suppose the temperature of a sample of propane gas is raised from 17.0 °C to 32.0 °C, and at the same time the pressure is decreased by 5.0%. Does the volume of the sample increase, decrease, or stay the same? If you said the volume increases or decreases, calculate the percentage change in the volume. Round your answer to the nearest percent. increase decrease stays the same % x10 X Ś ? 18 Ararrow_forwardThe atmosphere is a highly complex gaseous mixture that sustains life on Earth. Approximately 99% of the air is composed of nitrogen (N2) and oxygen (O2). The remaining 1% is made up of a variety of other gases, including carbon monoxide (CO), hydrogen (H2), and ammonia (NH3), among many others. Because most of the gases that comprise the atmosphere are present at very low levels (<0.002%), their quantities are often expressed in parts per million (ppm) or parts per billion (ppb) rather than as a percent. Ozone (O3) is found in the troposphere at 2.5×10−6%. Convert this value to parts per million. [O3]= _______ ppm The atmosphere contains 2.9×10−7%2.9×10−7% nitrogen dioxide (NO2). Convert this value to parts per billion. [NO2]= _______ ppb Atmospheric methane (CH4) is present at 1983 ppb. Convert this value to a percentage. [CH4]= _______ %arrow_forward8. For the reaction 2H₂O(1) + 2e¯ → H₂(g) + 2OH(aq), calculate the volume of "dry" hydrogen gas created at a pressure of 745 mm Hg and 25.0 °C when 0.6696 g H₂O are used. The vapor pressure of water at this temperature is 23.8 mmHg. A) 0.479 L B) 0.464 L C) 0.450 L D) 4.18 L E) 4.05 Larrow_forward
- G.319.arrow_forwardThe ideal gas law describes the relationship between pressure (P), temperature (T), volume (V), and the number of moles of gas (n). PV = nRT The additional symbol, R, represents the ideal gas constant. The ideal gas law is a good approximation of the behavior of gases when the pressure is low and the temperature is high. (What constitutes low pressure and high temperature varies with different gases.) In 1873, Johannes Diderik van der Waals proposed a modified version of the ideal gas law that better models the behavior of real gases over a wider range of temperature and pressure. na P + ")(v – nb) = nRT In this equation the additional variables a and b represent values characteristic of individual gases.arrow_forwardThe volume of a sample of pure HCl gas was 289 mL at 24 ° C and 137 mmHg. It was completely dissolved in about 50 mL of water and titrated with an NaOH solution; 11.7 mL of the NaOH solution was required to neutralize the HCl. Calculate the molarity of the NaOH solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
DISTINCTION BETWEEN ADSORPTION AND ABSORPTION; Author: 7activestudio;https://www.youtube.com/watch?v=vbWRuSk-BhE;License: Standard YouTube License, CC-BY
Difference Between Absorption and Adsorption - Surface Chemistry - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=e7Ql2ZElgc0;License: Standard Youtube License