
(a)
Interpretation:
The rate of CO production and it take to build up a lethal concentration of CO have to be calculated.
Concept introduction:
Ideal gas is the most usually used form of the ideal gas equation, which describes the relationship among the four variables P, V, n, and T. An ideal gas is a hypothetical sample of gas whose pressure-volume-temperature behavior is predicted accurately by the ideal gas equation.
PV = nRT
(a)

Answer to Problem 5.131QP
The rate of CO production is 0.112 mol CO/min
Explanation of Solution
To calculate the rate of CO production
188 g CO1 h × 1 mol CO28.01 g CO × 1 h60 min = 0.112 mol CO/min
The rate of CO production is calculated by plugging in the values of the given weight of the CO, molecular weight of the CO and time. The rate of CO production was found to be 0.112 mol CO/min.
(b)
Interpretation:
The rate of CO production and it take to build up a lethal concentration of CO have to be calculated.
Concept introduction:
Ideal gas is the most usually used form of the ideal gas equation, which describes the relationship among the four variables P, V, n, and T. An ideal gas is a hypothetical sample of gas whose pressure-volume-temperature behavior is predicted accurately by the ideal gas equation.
PV = nRT
(b)

Answer to Problem 5.131QP
The rate of CO production per minute time is 2.0 × 101 min
Explanation of Solution
1000 ppm means that there are 1000 particles of gas per 1,000,000 particles of air. The pressure of a gas is directly proportional to the number of particles of gas. We can calculate the partial pressure of CO in atmospheres, assuming that atmospheric pressure is 1 atm.
1000 particles1,000,000 particles × 1 atm = 1.0 × 10-4 3atm
A partial pressure of 1.0×10-3 atm CO is lethal.
The volume of the garage (in L) is:
(6.0m × 4.0 m × 2.2 m)× (1 cm0.01 m) × 1 L1000 cm3 = 5.3 × 104L
From part (a), we know the rate of CO production per minute. In one minute the partial pressure of CO will be:
PV = nRTPCO=nRTV = (0.112 mol) (0.08206L . atm K . mol) (20+273)K5.3 × 104 L =2.0 × 101 min
The rate of CO production per minute time is calculated by plugging in the values of the given moles, volume and temperature. The rate of CO production per minute time was found to be 2.0 × 101 min
How many minutes will it take for the partial pressure of CO to reach the lethal level, 1.0×10-3 atm?
? min = (1.0 × 10-3 atm CO) × 1 min 5.1× 10-5 atm CO = 2.0 × 10 1 min
It takes for the partial pressure of CO to reach the lethal level is calculated by plugging in the values of the given pressure of CO. It takes for the partial pressure of CO to reach the lethal levelwas found to be 2.0 × 101 min
Want to see more full solutions like this?
Chapter 5 Solutions
Loose Leaf for Chemistry
- Phenol is the starting material for the synthesis of 2,3,4,5,6-pentachlorophenol, known al-ternatively as pentachlorophenol, or more simply as penta. At one time, penta was widely used as a wood preservative for decks, siding, and outdoor wood furniture. Draw the structural formula for pentachlorophenol and describe its synthesis from phenol.arrow_forward12 Mass Spectrometry (d) This unknown contains oxygen, but it does not show any significant infrared absorption peaks above 3000 cm . 59 100- BO 40 Relative Abundance M(102) - 15 20 25 30 35 40 45 50 5 60 65 70 75 80 85 90 95 100 105 mizarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: H HO H HO H HO H H -OH CH2OH Click and drag to start drawing a structure. Х : Darrow_forward
- : Draw the structure of valylasparagine, a dipeptide made from valine and asparagine, as it would appear at physiological pH. Click and drag to start drawing a structure. P Darrow_forwardDraw the Haworth projection of α-L-mannose. You will find helpful information in the ALEKS Data resource. Click and drag to start drawing a structure. : ཊི Х Darrow_forwardDraw the structure of serine at pH 6.8. Click and drag to start drawing a structure. : d كarrow_forward
- Take a look at this molecule, and then answer the questions in the table below it. CH2OH H H H OH OH OH CH2OH H H H H OH H H OH H OH Is this a reducing sugar? yes α β ロ→ロ no ☑ yes Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. O no 0+0 If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. ☐arrow_forwardAnswer the questions in the table below about this molecule: H₂N-CH₂ -C—NH–CH–C—NH–CH—COO- CH3 CH CH3 What kind of molecule is this? 0= CH2 C If you said the molecule is a peptide, write a description of it using 3-letter codes separated ☐ by dashes. polysaccharide peptide amino acid phospolipid none of the above Хarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: CH₂OH C=O HO H H -OH H OH CH₂OH Click and drag to start drawing a structure. : ☐ Х S '☐arrow_forward
- Nucleophilic Aromatic Substitution 22.30 Predict all possible products formed from the following nucleophilic substitution reactions. (a) (b) 9 1. NaOH 2. HCI, H₂O CI NH₁(!) +NaNH, -33°C 1. NaOH 2. HCl, H₂Oarrow_forwardSyntheses 22.35 Show how to convert toluene to these compounds. (a) -CH,Br (b) Br- -CH3 22.36 Show how to prepare each compound from 1-phenyl-1-propanone. 1-Phenyl-1-propanone ہتی. Br. (b) Br (racemic) 22.37 Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid. 22.38 Show reagents and conditions to bring about the following conversions. (a) 9 NH2 8 CO₂H NH2 CO₂Et (d) NO2 NH2 S NH₂ NO2 CHS CHarrow_forwardive the major organic product(s) of each of the following reactions or sequences of reactions. Show all rant stereochemistry. [10 only] A. B. NaN3 1. LiAlH4, ether Br 2. H₂O CH3 HNO3 H₂/Pt H₂SO ethanol C. 0 0 CH3CC1 NaOH NHCCH AICI H₂O . NH₂ CH3CH2 N CH2CH3 + HCI CH₂CH 3 1. LIAIH, THE 2. H₂Oarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co


