
Concept explainers
(a)
Interpretation:
The grams of nickel that can be converted to the carbonyl with
Concept introduction:
According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.
The relationship between pressure and volume can be expressed as follows,
Here,
According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.
The relationship between pressure and temperature can be expressed as follows,
Here,
According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.
The relationship between volume and mole can be expressed as follows,
Here,
The ideal gas equation can be expressed as follows,
Here,
(a)

Answer to Problem 5.110P
The grams of nickel that can be converted to the carbonyl with
Explanation of Solution
The equation for the reaction of
The formula to convert
Substitute
The expression to convert pressure from
The expression to calculate the moles of the
Here,
Rearrange the equation (3) to calculate
Substitute the value
From equation (1), four moles of the
Substitute the value
The expression to calculate the mass of
Rearrange the equation (6) to calculate the mass of
Substitute the value
The grams of nickel that can be converted to the carbonyl with
(b)
Interpretation:
The mass of nickel obtained per cubic meter of the carbonyl at
Concept introduction:
According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.
The relationship between pressure and volume can be expressed as follows,
Here,
According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.
The relationship between pressure and temperature can be expressed as follows,
Here,
According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.
The relationship between volume and mole can be expressed as follows,
Here,
The ideal gas equation can be expressed as follows,
Here,
(b)

Answer to Problem 5.110P
The mass of nickel obtained per cubic meter of the carbonyl at
Explanation of Solution
The formula to convert
Substitute
The expression to calculate the moles of the
Here,
Rearrange the equation (9) to calculate
Substitute the value
From the equation (1), one mole of the
Substitute the value
The expression to calculate the mass of
Rearrange the equation (12) to calculate the mass of
Substitute the value
The mass of nickel obtained per cubic meter of the carbonyl at
(c)
Interpretation:
The volume of
Concept introduction:
According to Boyle’s law, the volume occupied by the gas is inversely proportional to the pressure at the constant temperature.
The relationship between pressure and volume can be expressed as follows,
Here,
According to Charles's law, the volume occupied by the gas is directly proportional to the temperature at the constant pressure.
The relationship between pressure and temperature can be expressed as follows,
Here,
According to Avogadro’s law, the volume occupied by the gas is directly proportional to the mole of the gas at the constant pressure and temperature.
The relationship between volume and mole can be expressed as follows,
Here,
The ideal gas equation can be expressed as follows,
Here,
(c)

Answer to Problem 5.110P
The volume of
Explanation of Solution
The expression to calculate the mass of
Substitute
From the equation (1), four moles of the
Substitute the value
Substitute
The expression to calculate the pressure of
Rearrange the equation (16) to calculate the
Substitute
The expression to convert
The expression to calculate the volume of
Here,
Rearrange the equation (18) to calculate
Substitute the value
The volume of
Want to see more full solutions like this?
Chapter 5 Solutions
Student Study Guide for Silberberg Chemistry: The Molecular Nature of Matter and Change
- 81. a. Propose a mechanism for the following reaction: OH CH2=CHCHC=N b. What is the product of the following reaction? HO H₂O N=CCH2CH2CH OH HO CH3CCH=CH2 H₂O C=N 82. Unlike a phosphonium ylide that reacts with an aldehyde or a ketone to form an alkene a sulfonium uliaarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. ? NH2 MgBr Will the first product that forms in this reaction create a new CC bond? ○ Yes ○ No MgBr ? Will the first product that forms in this reaction create a new CC bond? O Yes O No Click and drag to start drawing a structure. :☐ G x c olo Ar HEarrow_forwardPredicting As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C - C bond as its major product: H₂N O H 1. ? 2. H3O+ If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. 0 If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. فا Explanation Check Click and drag to start drawing a structure.arrow_forward
- Highlight the chirality (or stereogenic) center(s) in the given compound. A compound may have one or more stereogenic centers. OH OH OH OH OH OHarrow_forwardUsing wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forward
- Please draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardGiven a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





