Bundle: Inquiry Into Physics, 8th + Webassign Printed Access Card For Ostdiek/bord's Inquiry Into Physics, 8th Edition, Single-term
Bundle: Inquiry Into Physics, 8th + Webassign Printed Access Card For Ostdiek/bord's Inquiry Into Physics, 8th Edition, Single-term
8th Edition
ISBN: 9781337605045
Author: Vern J. Ostdiek, Donald J. Bord
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 45Q
To determine

To rank the pressure of each container.

Expert Solution & Answer
Check Mark

Answer to Problem 45Q

The pressure of the containers is ranked from largest to smallest pressure as,

P1>P3>P5=P6>P4>P2.

Explanation of Solution

Container A:

Given info:

The temperature of the container is 200K.

The volume of the container A is 2000cm3.

The value of universal gas constant R is 8.314 Jmol-1K-1.

Formula used:

Formula to find the pressure of the container.

Using ideal gas equation,

PV=nRT

Here, P is the pressure, V is the volume of the gas, n number of moles, R universal gas constant and T is the temperature the copper container.

Calculation:

Substitute the given values to find the final equilibrium temperature,

Let container contains one mole of helium gas the pressure is,

P1=8.314 Jmol-1K-1×200K2000cm3=1.247atm

Container B:

Given info:

The temperature of the container is 300K.

The volume of the container B is 15000cm3.

The value of universal gas constant R is 8.314 Jmol-1K-1.

Formula used:

Formula to find the pressure of the container.

Using ideal gas equation,

PV=nRT

Here, P is the pressure, V is the volume of the gas, n number of moles, R universal gas constant and T is the temperature the copper container.

Calculation:

Substitute the given values to find the final equilibrium temperature,

Let container contains one mole of helium gas the pressure is,

P2=8.314 Jmol-1K-1×300K15,000cm3=0.1663atm

Container C:

Given info:

The temperature of the container is 400K.

The volume of the container C is 5000cm3.

The value of universal gas constant R is 8.314 Jmol-1K-1.

Formula used:

Formula to find the pressure of the container.

Using ideal gas equation,

PV=nRT

Here, P is the pressure, V is the volume of the gas, n number of moles, R universal gas constant and T is the temperature the copper container.

Calculation:

Substitute the given values to find the final equilibrium temperature,

Let container contains one mole of helium gas the pressure is,

P3=8.314 Jmol-1K-1×300K5,000cm3=0.499atm

Container D:

Given info:

The temperature of the container is 300K.

The volume of the container D is 10,000cm3.

The value of universal gas constant R is 8.314 Jmol-1K-1.

Formula used:

Formula to find the pressure of the container.

Using ideal gas equation,

PV=nRT

Here, P is the pressure, V is the volume of the gas, n number of moles, R universal gas constant and T is the temperature the copper container.

Calculation:

Substitute the given values to find the final equilibrium temperature,

Let container contains one mole of helium gas the pressure is,

P4=8.314 Jmol-1K-1×300K10,000cm3=0.249atm

Container E:

Given info:

The temperature of the container is 200K.

The volume of the container E is 4000cm3.

The value of universal gas constant R is 8.314 Jmol-1K-1.

Formula used:

Formula to find the pressure of the container.

Using ideal gas equation,

PV=nRT

Here, P is the pressure, V is the volume of the gas, n number of moles, R universal gas constant and T is the temperature the copper container.

Calculation:

Substitute the given values to find the final equilibrium temperature,

Let container contains one mole of helium gas the pressure is,

P5=8.314 Jmol-1K-1×200K4,000cm3=0.416atm

Container F:

Given info:

The temperature of the container is 500K.

The volume of the container F is 10,000cm3.

The value of universal gas constant R is 8.314 Jmol-1K-1.

Formula used:

Formula to find the pressure of the container.

Using ideal gas equation,

PV=nRT

Here, P is the pressure, V is the volume of the gas, n number of moles, R universal gas constant and T is the temperature the copper container.

Calculation:

Substitute the given values to find the final equilibrium temperature,

Let container contains one mole of helium gas the pressure is,

P6=8.314 Jmol-1K-1×500K10,000cm3=0.416atm

After calculation the pressure of containers is ranked from largest to smallest pressure as,

P1>P3>P5=P6>P4>P2.

Conclusion:

Thus, the pressure of the containers is ranked from largest to smallest pressure as,

P1>P3>P5=P6>P4>P2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In (Figure 1) C1 = 6.00 μF, C2 = 6.00 μF, C3 = 12.0 μF, and C4 = 3.00 μF. The capacitor network is connected to an applied potential difference Vab. After the charges on the capacitors have reached their final values, the voltage across C3 is 40.0 V. What is the voltage across C4? What is the voltage Vab applied to the network? Please explain everything in steps.
I need help with these questions again. A step by step working out with diagrams that explains more clearly
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.50 m, y = 0.400 m, and z = 0. Please explain. The answer is not 60, 120, or 30.

Chapter 5 Solutions

Bundle: Inquiry Into Physics, 8th + Webassign Printed Access Card For Ostdiek/bord's Inquiry Into Physics, 8th Edition, Single-term

Ch. 5 - Prob. 3QCh. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Indicates a review question, which means it...Ch. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Prob. 7QCh. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Prob. 9QCh. 5 - Prob. 10QCh. 5 - (¦ Indicates a review question, which means it...Ch. 5 - (¦ Indicates a review question, which means it...Ch. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Prob. 14QCh. 5 - (¦ Indicates a review question, which means it...Ch. 5 - (¦ Indicates a review question, which means it...Ch. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Prob. 18QCh. 5 - (¦ Indicates a review question, which means it...Ch. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Prob. 21QCh. 5 - Prob. 22QCh. 5 - Prob. 23QCh. 5 - Prob. 24QCh. 5 - Prob. 25QCh. 5 - Prob. 26QCh. 5 - Prob. 27QCh. 5 - Prob. 28QCh. 5 - (¦ Indicates a review question, which means it...Ch. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Prob. 31QCh. 5 - Prob. 32QCh. 5 - Prob. 33QCh. 5 - Prob. 34QCh. 5 - Prob. 35QCh. 5 - Prob. 36QCh. 5 - Prob. 37QCh. 5 - Prob. 38QCh. 5 - Prob. 39QCh. 5 - (¦ Indicates a review question, which means it...Ch. 5 - Prob. 41QCh. 5 - Prob. 42QCh. 5 - Prob. 43QCh. 5 - Prob. 44QCh. 5 - Prob. 45QCh. 5 - Prob. 46QCh. 5 - Prob. 1PCh. 5 - On a nice winter day at the South Pole, the...Ch. 5 - An iron railroad rail is 700 ft long when the...Ch. 5 - A copper vat is 10 m long at room temperature...Ch. 5 - A machinist wishes to insert a steel rod with a...Ch. 5 - An aluminum wing on a passenger is 30 m long when...Ch. 5 - A fixed amount of a particular ideal gas at 16C°...Ch. 5 - em>. The volume of an ideal gas enclosed in a...Ch. 5 - A gas is compressed inside a cylinder (Figure...Ch. 5 - Prob. 10PCh. 5 - . How much heat is needed to raise the temperature...Ch. 5 - Prob. 12PCh. 5 - - (a) Compute the amount of heat needed to raise...Ch. 5 - Prob. 14PCh. 5 - . A 1,200-kg car going 25 m/s is brought to a stop...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - . On a winter day, the air temperature is — 15°C,...Ch. 5 - . On a summer day in Houston, the temperature is...Ch. 5 - . Inside a building, the temperature is 20°C, and...Ch. 5 - . On a hot summer day in Washington, D.C., the...Ch. 5 - . An apartment has the dimensions 10 in 1w 5 in 3...Ch. 5 - Prob. 24PCh. 5 - . The temperature of the air in thermals decreases...Ch. 5 - In cold weather, you can sometimes "see" your...Ch. 5 - . What is the Carnot efficiency of a heat engine...Ch. 5 - . What is the maximum efficiency that a hear...Ch. 5 - . As a gasoline engine is miming, an amount of...Ch. 5 - . A proposed ocean thermal-energy conversion...Ch. 5 - . An irreversible process takes place by which the...Ch. 5 - . The temperature in the deep interiors of some...Ch. 5 - Prob. 1CCh. 5 - Pyrex g1assware is noted for its ability to...Ch. 5 - Prob. 3CCh. 5 - As air rises in the atmosphere, its temperature...Ch. 5 - . 5. If air at 35°C and 77 percent relative...Ch. 5 - Prob. 6C
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY