21ST CENT.AST.W/WKBK+SMARTWORK >BI<
6th Edition
ISBN: 9780393415216
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 41QP
To determine
The peak wavelength of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particular star has a surface temperature of 30,000K. Determine Amax, the wavelength at the peak in the
plot of intensity versus wavelength.
The follow are the major categories of light (depending on your profession many of these can be divided up even more).
Which of these light types has the largest wavelength?
Question 6 options:
Radio
Microwave
Infrared
Visible
Ultraviolet
X-Ray
γ{"version":"1.1","math":"<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>"}-Ray
Photons of a certain infrared light have an energy of 1.21X 10^-19 J. What is the frequency of this IR light? Use ? = c/f to calculate its wavelength in nanometers.
Chapter 5 Solutions
21ST CENT.AST.W/WKBK+SMARTWORK >BI<
Ch. 5.1 - Prob. 5.1ACYUCh. 5.1 - Prob. 5.1BCYUCh. 5.2 - Prob. 5.2CYUCh. 5.3 - Prob. 5.3CYUCh. 5.4 - Prob. 5.4CYUCh. 5.5 - Prob. 5.5CYUCh. 5 - Prob. 1QPCh. 5 - Prob. 2QPCh. 5 - Prob. 3QPCh. 5 - Prob. 4QP
Ch. 5 - Prob. 5QPCh. 5 - Prob. 6QPCh. 5 - Prob. 7QPCh. 5 - Prob. 8QPCh. 5 - Prob. 9QPCh. 5 - Prob. 10QPCh. 5 - Prob. 11QPCh. 5 - Prob. 12QPCh. 5 - Prob. 13QPCh. 5 - Prob. 14QPCh. 5 - Prob. 15QPCh. 5 - Prob. 16QPCh. 5 - Prob. 17QPCh. 5 - Prob. 18QPCh. 5 - Prob. 19QPCh. 5 - Prob. 20QPCh. 5 - Prob. 21QPCh. 5 - Prob. 22QPCh. 5 - Prob. 23QPCh. 5 - Prob. 24QPCh. 5 - Prob. 25QPCh. 5 - Prob. 26QPCh. 5 - Prob. 27QPCh. 5 - Prob. 28QPCh. 5 - Prob. 29QPCh. 5 - Prob. 30QPCh. 5 - Prob. 31QPCh. 5 - Prob. 32QPCh. 5 - Prob. 33QPCh. 5 - Prob. 34QPCh. 5 - Prob. 35QPCh. 5 - Prob. 36QPCh. 5 - Prob. 37QPCh. 5 - Prob. 38QPCh. 5 - Prob. 39QPCh. 5 - Prob. 40QPCh. 5 - Prob. 41QPCh. 5 - Prob. 42QPCh. 5 - Prob. 43QPCh. 5 - Prob. 44QPCh. 5 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Answer these questions for celestial bodies at each of the following temperatures and then draw a conclusion about the relationship between temperature and wavelength of maximum intensity. What is the wavelength of maximum intensity? In which part of the electromagnetic spectrum (gamma-ray, X-ray, UV, visible light, IR, microwave, or radio) does this peak wavelength lie? Give an example of an object that might have this temperature. a. 50 K b. 500 K c. 5000 K d. 50,000 Karrow_forwardA bright red star is moving towards Earth. Which of the choices best completes the following statement describing the spectrum of this star? A(n) ___________ spectrum that is _______ relative to an unmoving star. A. continuous; blueshifted B. continuous; redshifted C. emission; redshifted D. absorption; blueshifted E. absorption; redshiftedarrow_forwardWhat wavelength ( in nanometers ) is the peak intensity of the light coming from a star whose surface temperature is 4987 Kelvin? What color would we see with our eyes?arrow_forward
- What would the wavelength of the 21 cm line be for a source moving away from the Earth at 10% the speed of light? What is the source of this 21 cm line?arrow_forwardThe hottest ordinary star in our galaxy has a surface temperature of 53,000 K. What is the peak wavelength of its thermal radiation?arrow_forward. How big would a square solar sail need to be in order for sunlight to exert a 12 N force on it (use 1,100 W/m² as the intensity of the sunlight).arrow_forward
- How many watts of radiation does a 1-meter-square region of the Sun’s spot emit, at a temperature of 5000 K? How much would the wattage increase if the temperature of the spot were twice as much, 10 000 K?arrow_forwardA star with a mass like the Sun which will soon die is observed to be surrounded by a large amount of dust and gas -- all material it has expelled in the late stages of its life. If astronomers want to observe the radiation from such a giant star surrounded by its own debris, which of the following bands of the spectrum would be the best to use to observe it? gamma-rays x-rays ultraviolet infrared very long wavelength radio wavesarrow_forwardThe intensity of light from a central source varies inversely as the square of the distance. If you lived on a planet only half as far from the Sun as our Earth, how would Sun’s light intensity compare with that on Earth? How about a planet 10 times farther away than Earth?arrow_forward
- Why don’t we see hydrogen Balmer lines in the spectra of stars with temperatures of 3,200 K? a. There is no hydrogen in stars this cool. b. The stars are hot enough that most of the hydrogen is ionized and the atoms cannot absorb energy. c. These stars are so cool that nearly all of the hydrogen atoms are in the ground state. d. Stars of this temperature are too cool to produce an absorption spectrum. e. Stars of this temperature are too hot to produce an absorption spectrum.arrow_forwardA star has the peak of its blackbody spectrum occur at a wavelength of 271 nm. What is its temperature?arrow_forwardTutorial Star A has a temperature of 5,000 K and Star B has a temperature of 6,000 K. At what wavelengths (in nm) will each of these star's intensity be at its maximum? If the temperatures of the stars increase, the wavelength of maximum intensity. What is the temperature (in K) of a star that appears most intense at a wavelength of 829 nm? Part 1 of 4 Wien's Law tells us how the temperature of a star determines the wavelength of maximum intensity or at what wavelength the star appears brightest. 2.90 x 106 TK If the temperature is in kelvin (K) then A is in nanometers (nm). Anm ^A = AB = = Part 2 of 4 To determine the wavelengths of maximum intensity for the two stars: 2.90 x 106 2.90 x 106 K nm nmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning