21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 30QP
To determine
The size of the orbit of a planet with same temperature as Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
= 2000 K and a radius of R,
A young recently formed planet has a surface temperature T
Jupiter radii (where Jupiter's radius is 7 x 107 m). Calculate the luminosity of the planet and
2
determine the ratio of the planet's luminosity to that of the Sun.
Imagine a planet orbiting a star.
Observations show a Doppler shift in the
star's spectrum of 66 m/s over the 4.5 day
orbit of the planet. What is the mass of the
planet in kg? Assume the star has the same
mass as the Sun (2.0 x 1030 kg), there are
365.25 days in a year, and 1AU = and 1.5 x
1011 m.
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
Chapter 5 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 5.1 - Prob. 5.1ACYUCh. 5.1 - Prob. 5.1BCYUCh. 5.2 - Prob. 5.2CYUCh. 5.3 - Prob. 5.3CYUCh. 5.4 - Prob. 5.4CYUCh. 5.5 - Prob. 5.5CYUCh. 5 - Prob. 1QPCh. 5 - Prob. 2QPCh. 5 - Prob. 3QPCh. 5 - Prob. 4QP
Ch. 5 - Prob. 5QPCh. 5 - Prob. 6QPCh. 5 - Prob. 7QPCh. 5 - Prob. 8QPCh. 5 - Prob. 9QPCh. 5 - Prob. 10QPCh. 5 - Prob. 11QPCh. 5 - Prob. 12QPCh. 5 - Prob. 13QPCh. 5 - Prob. 14QPCh. 5 - Prob. 15QPCh. 5 - Prob. 16QPCh. 5 - Prob. 17QPCh. 5 - Prob. 18QPCh. 5 - Prob. 19QPCh. 5 - Prob. 20QPCh. 5 - Prob. 21QPCh. 5 - Prob. 22QPCh. 5 - Prob. 23QPCh. 5 - Prob. 24QPCh. 5 - Prob. 25QPCh. 5 - Prob. 26QPCh. 5 - Prob. 27QPCh. 5 - Prob. 28QPCh. 5 - Prob. 29QPCh. 5 - Prob. 30QPCh. 5 - Prob. 31QPCh. 5 - Prob. 32QPCh. 5 - Prob. 33QPCh. 5 - Prob. 34QPCh. 5 - Prob. 35QPCh. 5 - Prob. 36QPCh. 5 - Prob. 37QPCh. 5 - Prob. 38QPCh. 5 - Prob. 39QPCh. 5 - Prob. 40QPCh. 5 - Prob. 41QPCh. 5 - Prob. 42QPCh. 5 - Prob. 43QPCh. 5 - Prob. 44QPCh. 5 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One method to measure the diameter of a star is to use an object like the Moon or a planet to block out its light and to measure the time it takes to cover up the object. Why is this method used more often with the Moon rather than the planets, even though there are more planets?arrow_forwardThe spectrum of the Sun has hundreds of strong lines of nonionized iron but only a few, very weak lines of helium. A star of spectral type B has very strong lines of helium but very weak iron lines. Do these differences mean that the Sun contains more iron and less helium than the B star? Explain.arrow_forwardAppendix I lists some of the nearest stars. Are most of these stars hotter or cooler than the Sun? Do any of them emit more energy than the Sun? If so, which ones?arrow_forward
- Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forwardTwo stars of the same diameter or observed to have surface temperatures of 4000 Kelvin and 16,000 Kelvin. Which star is probably the brighter of the two? How many times brighter?arrow_forwardStar B has a temperature that is 5 times higher than Star A. How much more energy per second (compared to Star A) does it radiate from a square meter of its surface? EA = O(TA) 4 EB = σ(TB)4 Again, we know that Star B's temperature is n times Star A's. TB = nTA EB = σ(NTA) 4 So in terms of Star A's energy, Star B's is: EB = EAarrow_forward
- Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 58 m/s over the 3.3 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 x1030 kg), there are 365.25 days in a year, and 1AU = 1.5 x 1011 m.arrow_forwardIf a star has a surface temperature of 18,000 K (1.80 ✕ 104 K), at what wavelength (in nm) will it radiate the most energy? Is this a cool or hot star? (Give your answer relative to the Sun.)arrow_forwardThe three most prominent spectral lines of hydrogen are H-α at 656 nm, H-β at 486 nm, and H-γ 434 nm. If we observe an object with H-α at a wavelength of 700 nm, what wavelength will we observe H-β and H-γ? Is the object moving toward or away from us, and how do you know? Suppose we observe another object with H-α at 585 nm. Is this object moving toward or away from us? Is it moving slower or faster than the first object?arrow_forward
- Many of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and others are blue giants (such as Rigel) or red giants (such as Betelgeuse). Generally, such stars have a luminosity of 103 to 105 times that of our Sun! Ignoring any effects from our atmosphere, how bright would a star with a luminosity of 8380 solar luminosities be if it were located 620 light years from Earth? (You will need to convert some values.) W/m² For comparison, if you were 1 meter from a regular 100 W light bulb, the brightness would be 7.96 W/ m². (Since stars are not this bright, your answer should be considerably less!) Kind of amazing you can see these things, isn't it?arrow_forwardA star is moving toward Earth with a radial velocity (speed directly toward or away from Earth) of 40,000 km/s. If we take a spectrum of this star’s light, will we find it to be red shifted or blue shifted? By what fraction are the wavelengths in this star’s spectrum shifted? [Answer: λ0/λ = 0.88]arrow_forwardEarth is about 150 million kilometers from the Sun (1 Astronomical Unit, or AU), and the apparent brightness of the Sun in our sky is about 1300 watts/m2. Using these two facts and the inverse square law for light, determine the apparent brightness that we would measure for the Sun if we were located at the following positions. a) At the orbit of Jupiter (780 million km from the Sun).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning