
Concept explainers
Draw a Lewis structure and use VSEPR theory to determine the geometry of each molecule. If the molecule has more than one central atom, indicate the geometry about each of these and draw the three-dimensional structure.

Interpretation:
The Lewis structures for the given compounds are to be drawn and the geometry of each of the given molecules is to be determined and the geometry of more than one central atom is to be indicated using the VSEPR theory. The three-dimensional structures of the given molecules are to be drawn.
Concept Introduction:
According to the Lewis theory, in covalent bonds, atoms share their electrons. The steps for drawing a covalent Lewis structure are as follows:
Write the skeletal structure of the molecule.
Add the number of valence electrons of each of the atoms in the molecule to determine the total number of electrons in the molecule.
Place the electrons by dots to complete the octets of the atoms.
If the central atom has not obtained an octet, then its multiple bonds can be formed.
The VSEPR theory is helpful in predicting the shapes of molecules from their Lewis structures. The geometry of a molecule can be determined on the basis of the number of electron groups, lone pairs and bonding pairs in the molecule.
Answer to Problem 29E
Solution:
a)
Lewis structure:
Molecular geometry is bent.
b)
Lewis structure:
Molecular geometry is tetrahedral.
c)
Lewis structure:
Molecular geometry is bent.
d)
Lewis structure:
Molecular geometry is pyramidal.
Explanation of Solution
a)
The skeletal structure for the compound is as follows:
Now, the total number of electrons for the molecule is determined as follows:
Place the electrons as dots to give octet to each of the atoms in the molecule. Draw a single bond between the atoms. The central atom has not obtained an octet. Hence, nitrogen will form a double bond with oxygen to get its octet completed. Thus, the Lewis structure of
As all the atoms in the structure have obtained their octet, and thus, structure is complete. There are three electron pairs around the central atom. A double bond counts as a single electron group. Thus, there are two bonding pairs and one lone pair. Hence, according to the VSEPR theory, the molecular geometry is bent.
b)
The two carbon atoms are in the middle, each with three hydrogen atoms attached.
The skeletal structure for the compound is:
Now, the total number of electrons for the molecule is determined as follows:
Place the electrons as dots to give octet or duet to each of the atoms in the molecule. Draw a single bond between the atoms. Hence, the Lewis dot structure for the molecule will be as follows:
As all the hydrogen atoms in the structure have obtained their duet and both the carbon atoms have obtained their octet, thus, structure is complete. There are two central carbon atoms and so, the geometry is considered at each. There are four electron pairs around each carbon atom and no lone pair. Hence, according to the VSEPR theory, the molecular geometry is tetrahedral at each carbon atom.
c)
The two nitrogen atoms are in the centre and two fluorine atoms at the ends.
The skeletal structure for the compound is as follows:
Now, the total number of electrons for the molecule is determined as follows:
Place the electrons as dots to give octet to each of the atoms in the molecule. Draw a single bond between the atoms. Hence, the Lewis dot structure for the molecule will be as follows:
As all the atoms in the structure have obtained an octet, the structure is complete. There are two central nitrogen atoms and so, the geometry is considered at each. There are three electron groups around each nitrogen: two bonding groups and a lone pair. Hence, according to the VSEPR theory, the electron geometry is trigonal planar but the correct molecular geometry is bent.
d)
The two nitrogen atoms are in the centre and the two hydrogen atoms are attached to each nitrogen.
The skeletal structure for the compound is:
Now, the total number of electrons for the molecule is determined as follows:
Place the electrons as dots to give octet or duet to each of the atoms in the molecule. Draw a single bond between the atoms. Hence, the Lewis dot structure for the molecule will be as follows:
As all the hydrogen atoms in the structure have obtained their duet and the nitrogen atoms have completed their octets, the structure is complete. There are two central nitrogen atoms and so, the geometry is considered at each one. There are four electron groups around each nitrogen: three bonding groups and a lone pair. Hence, according to the VSEPR theory, the molecular geometry is trigonal pyramidal at each nitrogen atom.
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY IN FOCUS (LL)-TEXT
- 6 Which of the following are likely to be significant resonance structures of a resonance hybrid? Draw another resonance structure for each of the compounds you select as being a resonance form. (A Br: Br: A B C D Earrow_forwardWrite the systematic (IUPAC) name for the following organic molecules. Note for advanced students: you do not need to include any E or Z prefixes in your names. Br structure Br Br Oweuarrow_forwardConservation of mass was discussed in the background. Describe how conservation of mass (actual, not theoretical) could be checked in the experiment performed.arrow_forward
- What impact would adding twice as much Na2CO3 than required for stoichiometric quantities have on the quantity of product produced? Initial results attachedarrow_forwardGiven that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield. Results are attached form experimentarrow_forward5) Calculate the flux of oxygen between the ocean and the atmosphere(2 pts), given that: (from Box 5.1, pg. 88 of your text): Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturated What is flux if the temperature is 10°C ? (2 pts) (Hint: use the same density in your calculations). Why do your calculated values make sense (or not) based on what you know about the relationship between gas solubility and temperature (1 pt)?arrow_forward
- The following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward(ME EX2) Prblms Can you please explain problems to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning



