Concept explainers
(a)
Interpretation:
To determine the number of proton and electron of the ionic species Mg2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Mg2 + species is 12 and 10 respectively.
Explanation of Solution
(b)
Interpretation:
To determine the number of proton and electron of the ionic species Fe2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Fe2 + species is 26 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-2 = 24.
(c)
Interpretation:
To determine the number of proton and electron of the ionic species Fe3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Fe3 + species is 26 and 23 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-3 = 23.
(d)
Interpretation:
To determine the number of proton and electron of the ionic species F-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of F- species is 9 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Mg2 + is 9 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 9+1 = 10.
(e)
Interpretation:
To determine the number of proton and electron of the ionic species Ni2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Ni2 + species is 28 and 26 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Ni2 + is 28 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 28-2 = 26.
(f)
Interpretation:
To determine the number of proton and electron of the ionic species Zn2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Zn2 + species is 30 and 28 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Zn2 + is 30 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 30-2 = 28.
(g)
Interpretation:
To determine the number of proton and electron of the ionic species Co3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Co3 + species is 27 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Co3 + is 27 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 27-3 = 24.
(h)
Interpretation:
To determine the number of proton and electron of the ionic species N3-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of N3 - species is 7 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of N3 - is 7 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 7+3 = 10.
(i)
Interpretation:
To determine the number of proton and electron of the ionic species S2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of S2 - species is 16 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of S2 - is 16 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 16+2 = 18.
(j)
Interpretation:
To determine the number of proton and electron of the ionic species Rb+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Rb+ species is 37and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Rb+ is 37 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 37-1=36.
(k)
Interpretation:
To determine the number of proton and electron of the ionic species Se2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Se2 - species is 34 and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Se2 - is 34 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 34+2 = 36.
(l)
Interpretation:
To determine the number of proton and electron of the ionic species K+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of K+ species is 19 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of K+ is 19 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 19-1 = 18.
Want to see more full solutions like this?
Chapter 5 Solutions
INTRODUCTORY CHEMISTRY
- 4. For the following complexes, draw the structures and give a d-electron count of the metal: a) Tris(acetylacetonato)iron(III) b) Hexabromoplatinate(2-) c) Potassium diamminetetrabromocobaltate(III) (6 points)arrow_forward2. Calculate the overall formation constant for [Fe(CN)6]³, given that the overall formation constant for [Fe(CN)6] 4 is ~1032, and that: Fe3+ (aq) + e = Fe²+ (aq) E° = +0.77 V [Fe(CN)6]³ (aq) + e¯ = [Fe(CN)6] (aq) E° = +0.36 V (4 points)arrow_forward5. Consider the compounds shown below as ligands in coordination chemistry and identify their denticity; comment on their ability to form chelate complexes. (6 points) N N A B N N N IN N Carrow_forward
- 1. Use standard reduction potentials to rationalize quantitatively why: (6 points) (a) Al liberates H2 from dilute HCl, but Ag does not; (b) Cl2 liberates Br2 from aqueous KBr solution, but does not liberate C12 from aqueous KCl solution; c) a method of growing Ag crystals is to immerse a zinc foil in an aqueous solution of AgNO3.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 3 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? N N H3O+ +R + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. fmarrow_forward
- The product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH3CN H+ N Click and drag to start drawing a structure. 5arrow_forwardAssign this HSQC Spectrum ( please editing clearly on the image)arrow_forward(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³arrow_forward
- fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transferarrow_forward34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10arrow_forwardelow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





