| At a construction site, a 22.0 kg bucket of concrete is connected over a very light frictionless pulley to a 375 N box on the roof of a building. (See Figure 5.51 .) There is no appreciable friction on the box, since it is on roller bearings. The box starts from rest. (a) Make free-body diagrams of the bucket and the box. (b) Find the acceleration of the bucket. (c) How fast is the bucket moving after it has fallen 1.50 m (assuming that the box has not yet reached the edge of the roof)? Figure 5.51 Problem 23.
| At a construction site, a 22.0 kg bucket of concrete is connected over a very light frictionless pulley to a 375 N box on the roof of a building. (See Figure 5.51 .) There is no appreciable friction on the box, since it is on roller bearings. The box starts from rest. (a) Make free-body diagrams of the bucket and the box. (b) Find the acceleration of the bucket. (c) How fast is the bucket moving after it has fallen 1.50 m (assuming that the box has not yet reached the edge of the roof)? Figure 5.51 Problem 23.
| At a construction site, a 22.0 kg bucket of concrete is connected over a very light frictionless pulley to a 375 N box on the roof of a building. (See Figure 5.51.) There is no appreciable friction on the box, since it is on roller bearings. The box starts from rest. (a) Make free-body diagrams of the bucket and the box. (b) Find the acceleration of the bucket. (c) How fast is the bucket moving after it has fallen 1.50 m (assuming that the box has not yet reached the edge of the roof)?
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius
p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis
when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to
calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed
Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of
the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons.
Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons.
Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.