![EBK STATISTICAL TECHNIQUES IN BUSINESS](https://www.bartleby.com/isbn_cover_images/9781259924163/9781259924163_largeCoverImage.jpg)
Concept explainers
a.
Identify the experiment in the given situation.
a.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Experiment: It is the process in which it leads to exactly one occurrence among different possible results.
Here, the playability of a new video game is tested by 80 veteran game players. Hence, the experiment is to count number of players who identify that the new video game is playable.
b.
Identify the one possible outcome.
b.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Answers will vary. One of the possible answers is given below.
Outcome: It is a particular result of an experiment.
Consider, 60 veteran players identify the new video game as playable. Thus, one of the possible outcomes of the experiment is 60 veteran players.
c.
Check whether 65 represents
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 1SR
No, 65 does not represent probability.
Explanation of Solution
The value of probability lies between 0 and 1, inclusive. Here, 65 is greater than 1. Out of 80 veteran players, 65 players think that the new video game is playable. That is, when the new video game is in to market, there is
Hence, 65 does not represent probability.
d.
Comment on the probability value −1.
d.
![Check Mark](/static/check-mark.png)
Explanation of Solution
The value of probability lies between 0 and 1, inclusive. Here, −1is less than 0. Hence it is not possible to have the probability value as −1.
e.
Specify a possible
e.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Answers will vary. One of the possible answers is given below.
Event: It is defined as the collection of all possible outcomes in an experiment.
In the given experiment, the event can be “More than three-fourth of the players liked the game”.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK STATISTICAL TECHNIQUES IN BUSINESS
- Examine the Variables: Carefully review and note the names of all variables in the dataset. Examples of these variables include: Mileage (mpg) Number of Cylinders (cyl) Displacement (disp) Horsepower (hp) Research: Google to understand these variables. Statistical Analysis: Select mpg variable, and perform the following statistical tests. Once you are done with these tests using mpg variable, repeat the same with hp Mean Median First Quartile (Q1) Second Quartile (Q2) Third Quartile (Q3) Fourth Quartile (Q4) 10th Percentile 70th Percentile Skewness Kurtosis Document Your Results: In RStudio: Before running each statistical test, provide a heading in the format shown at the bottom. “# Mean of mileage – Your name’s command” In Microsoft Word: Once you've completed all tests, take a screenshot of your results in RStudio and paste it into a Microsoft Word document. Make sure that snapshots are very clear. You will need multiple snapshots. Also transfer these results to the…arrow_forward2 (VaR and ES) Suppose X1 are independent. Prove that ~ Unif[-0.5, 0.5] and X2 VaRa (X1X2) < VaRa(X1) + VaRa (X2). ~ Unif[-0.5, 0.5]arrow_forward8 (Correlation and Diversification) Assume we have two stocks, A and B, show that a particular combination of the two stocks produce a risk-free portfolio when the correlation between the return of A and B is -1.arrow_forward
- 9 (Portfolio allocation) Suppose R₁ and R2 are returns of 2 assets and with expected return and variance respectively r₁ and 72 and variance-covariance σ2, 0%½ and σ12. Find −∞ ≤ w ≤ ∞ such that the portfolio wR₁ + (1 - w) R₂ has the smallest risk.arrow_forward7 (Multivariate random variable) Suppose X, €1, €2, €3 are IID N(0, 1) and Y2 Y₁ = 0.2 0.8X + €1, Y₂ = 0.3 +0.7X+ €2, Y3 = 0.2 + 0.9X + €3. = (In models like this, X is called the common factors of Y₁, Y₂, Y3.) Y = (Y1, Y2, Y3). (a) Find E(Y) and cov(Y). (b) What can you observe from cov(Y). Writearrow_forward1 (VaR and ES) Suppose X ~ f(x) with 1+x, if 0> x > −1 f(x) = 1−x if 1 x > 0 Find VaRo.05 (X) and ES0.05 (X).arrow_forward
- Joy is making Christmas gifts. She has 6 1/12 feet of yarn and will need 4 1/4 to complete our project. How much yarn will she have left over compute this solution in two different ways arrow_forwardSolve for X. Explain each step. 2^2x • 2^-4=8arrow_forwardOne hundred people were surveyed, and one question pertained to their educational background. The results of this question and their genders are given in the following table. Female (F) Male (F′) Total College degree (D) 30 20 50 No college degree (D′) 30 20 50 Total 60 40 100 If a person is selected at random from those surveyed, find the probability of each of the following events.1. The person is female or has a college degree. Answer: equation editor Equation Editor 2. The person is male or does not have a college degree. Answer: equation editor Equation Editor 3. The person is female or does not have a college degree.arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305071742/9781305071742_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)