
Electricity for Refrigeration, Heating, and Air Conditioning
9th Edition
ISBN: 9781285179988
Author: Russell E. Smith
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 5, Problem 1RQ
What are the three types of electrical diagrams used in the heating, cooling, and refrigeration industry?
Expert Solution & Answer

To determine
The three types of electrical diagrams used in heating, cooling, and refrigeration industry.
Explanation of Solution
The three types of electrical diagrams used in heating, cooling and refrigeration industry are as follows:
- 1. Schematic diagrams: Schematic diagrams are the diagrams having symbols of electrical components and lines to represent wiring and these are also known as circuit diagrams. They represent the connection of the electrical objects in a circuit that helps to find an error in a circuit so that it can be rectify before manufacturing it.
- 2. Pictorial diagrams: Pictorial diagrams are also similar to schematic diagrams. They differ by the presentation of electrical objects in the circuit. In pictorial diagrams, the electrical objects are represented by the actual picture of the electrical objects. These diagrams are easy to understand because of the picture presentation of objects.
- 3. Installation diagrams: Installation diagrams are also called as wire diagrams. The wires are represented by the different colors and sizes so that the installer easily understands the connections. These diagrams also give the information about the arrangement of the devices and their relative positions.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The answer is not 4.378 ft/s
The answer is not 0.293 m
please first help me solve this problem find the line of action and them help to find the forces like for example {fx= fy= mz= and determine the shear force in the nails
Chapter 5 Solutions
Electricity for Refrigeration, Heating, and Air Conditioning
Ch. 5 - What are the three types of electrical diagrams...Ch. 5 - A load is an electrical device that __________. a....Ch. 5 - What is the major load of an air-conditioning...Ch. 5 - Identify the following symbols for loads:Ch. 5 - Prob. 5RQCh. 5 - What do the terms normally open and normally...Ch. 5 - What is the difference between a magnetic starter...Ch. 5 - Prob. 8RQCh. 5 - Draw a heating and a cooling thermostat and...Ch. 5 - A three-pole contactor would allow how many paths...
Ch. 5 - A disconnect switch is used to __________. a. open...Ch. 5 - What determines whether a pressure switch opens or...Ch. 5 - Identify the following symbols for...Ch. 5 - What is the difference between a thermal overload...Ch. 5 - What is the purpose of a transformer? Draw the...Ch. 5 - Which of the following is not a requirement for an...Ch. 5 - What is the purpose of a legend on a schematic...Ch. 5 - A factual diagram is _____. a. a pictorial diagram...Ch. 5 - Identify the following symbols for safety devices.Ch. 5 - Prob. 20RQCh. 5 - True or False: The schematic diagram tells service...Ch. 5 - What is the difference between a pilot duty and a...Ch. 5 - What type of switch would be used to open or close...Ch. 5 - What is the purpose of a fuse in an electrical...Ch. 5 - True or False: A solenoid valve is a device that...Ch. 5 - What is a signal light used for in a control...Ch. 5 - Change the following normally open elements from...Ch. 5 - Draw the symbols for the following electrical...Ch. 5 - Add letter designations to the symbols to indicate...Ch. 5 - Draw a symbol for a magnetic starter.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An open channel of square cross section had a flowrate of 17.2 ft³/s when first used. After extended use, the channel became 0.6-filled with silt. Determine the flowrate for this silted condition. Assume the Manning coefficient is the same for all the surfaces. Qs= ! ft³/sarrow_forward(Manning equation) The triangular flume shown in the figure below is built to carry its design flowrate, Qo, at a depth of 0.991 m as is indicated. If the flume is to be able to carry up to twice its design flowrate, Q = 2Qo, determine the freeboard, I, needed. ✓ -90°- 0.991 m i marrow_forwardWater flows in a 2-ft-wide rectangular channel at a rate of 10 ft³/s. If the water depth downstream of a hydraulic jump is 2.5 ft, determine (a) the water depth upstream of the jump, (b) the upstream and (c) downstream Froude numbers, and (d) the head loss across the jump. (a) y₁ = i (b) Fr₁ = i (c) Fr₂ = i (d) h₁ = ft ftarrow_forward
- A hydraulic jump at the base of a spillway of a dam is such that the depths upstream and downstream of the jump are 0.8 and 3.2 m, respectively (see the Video). If the spillway is 12 m wide, what is the flowrate over the spillway? Q= i m³/sarrow_forward(Manning equation) Water flows in a rectangular channel of width b at a depth of b/2. Determine the diameter of a circular channel (in terms of b) that carries the same flowrate when it is half-full. Both channels have the same Manning coefficient, n, and slope. barrow_forward(Manning equation) A weedy irrigation canal of trapezoidal cross section is to carry 20 m³/s when built on a slope of 0.60 m/km. If the sides are at a 45° angle and the bottom is 8 m wide, determine the width of the waterline at the free surface. i marrow_forward
- Water flows in a 1.2-m-diameter finished concrete pipe so that it is completely full and the pressure is constant all along the pipe. If the slope is So = 0.0073, (a) determine the flowrate by using open-channel flow methods. Compare this result with (b) that obtained using the pipe flow methods of Chapter 8 (Use Colebrook formula, Table 8.1, Table 10.1 and assume that Re > 10º). (a) Q = i (b) Q = i m³/s m³/sarrow_forwardfor this 4 figuredarw the Kinematic Diagram:DoF:F=Type/Name ofmechanismEvolution:arrow_forwardTwo channels and two plates are used to formthe column section shown. For b = 200 mm,determine the moments of inertia and theradii of gyration of the combined section withrespect to the centroidal x and y axes.For the section of problem, determine thefirst moment of the upper plate about thecentroidal x-axisarrow_forward
- Determine by direct integration the moment of inertia of theshaded area at right with respect to the x axis shown. Determine by direct integration the moment of inertia of theshaded area of the figure with respect to the y axis shown.arrow_forwardFor the following MATLAB code, I need to answer a few questions. Can you identify the curves as elliptic functions? Which curves reflect the sn, cn, and dn functions?From the curves, determine the maximum amplitudes and the period corresponding toeach angular velocity component. clc; clear all; I = [500; 125; 425]; w = [0.2; 0.1; 0.2]; rev = 0:0.01:10; C = eye(3); % Using ode45 to integrate the KDE and DDE options = odeset('RelTol',1e-9,'AbsTol',1e-9); result = ode45(@K_DDE, rev, [w; I; C(:)], options); v = result.x; % Extracting information from the ode45 solver w = result.y(1:3, :); C_ode = reshape(result.y(7:end, :), [3,3,length(v)]); plot(v, w) xlabel('rev') ylabel('w (rad/s)') legend('w1', 'w2', 'w3') % Functions function dwCdt = K_DDE(~, w_IC) % Extracting the initial condtions to a variable w = w_IC(1:3); I = w_IC(4:6); C = reshape(w_IC(7:end), [3, 3]); I1 = I(1); I2 = I(2); I3 = I(3); K1 = -(I3-I2)/I1; K2 = -(I1-I3)/I2; K3 = -(I2-I1)/I3; %…arrow_forwardplease show a drawing/image and explain how to properly do the question. thanksarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
- Electrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage Learning

Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
How to Measure Threads; Author: PracticalMachinist;https://www.youtube.com/watch?v=Uuy7EViS7Kc;License: Standard Youtube License