Single Variable Calculus
Single Variable Calculus
8th Edition
ISBN: 9781305266636
Author: James Stewart
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 1RCC

(a) Draw two typical curves y = f(x) and y = g(x), where f(x) … g(x) for a x b. Show how to approximate the area between these curves by a Riemann sum and sketch the corresponding approximating rectangles. Then write an expression for the exact area.

(b) Explain how the situation changes if the curves have equations x = f(y) and x = g(y), where f(y) … g(y) for cyd.

(a)

Expert Solution
Check Mark
To determine

To Draw: the two typical curves y=f(x) and y=g(x).

To define: A Riemann sum that approximates the area between the two typical curves with drawing of the corresponding approximating rectangles and exact area between the two typical curves and the expression for the exact area.

Explanation of Solution

Consider the two curves y=f(x) and y=g(x).

Here, the top curve function is f(x) and the bottom curve function is g(x).

Assume f and g are continuous function and f(x)g(x) for axb.

Here, the lower limit is a and the upper limit is b.

Show the approximate ith strip rectangle with base Δx and height f(xi*)g(xi*) in the region between a and b.

Sketch the two typical curves y=f(x) and y=g(x) as shown in Figure 1.

Single Variable Calculus, Chapter 5, Problem 1RCC , additional homework tip  1

Refer to figure 1.

The two typical curves y=f(x) and y=g(x) showing the approximate ith strip rectangle is drawn.

The expression for the exact area is A=limni=1n[f(xi*)g(xi*)]Δx.

Divide the area between the two typical curves into n strips of equal width and take the entire sample points to be right endpoints, in which xi* as xi. Hence the Riemann sum is

i=1n[f(xi*)g(xi*)]Δx

Sketch thecorresponding approximating rectangles as shown in Figure 2.

Single Variable Calculus, Chapter 5, Problem 1RCC , additional homework tip  2

The better and better approximation occurs in n. Hencethe exact areaA, between the two typical curves is the sum of the areas of the corresponding approximating rectangles as shown below.

A=limni=1n[f(xi*)g(xi*)]Δx

Thus, the Riemann sum with the sketch of corresponding approximating rectangles and the exact area between the two typical curves shown.

Therefore, the approximation of the area between the two typical curves using Riemann sum with the sketch of the corresponding approximating rectangles and the sum of the areas corresponding approximating rectangles is the exact area.

(b)

Expert Solution
Check Mark
To determine

To Draw: The two typical curves with the changing the situation as x=f(y) and x=g(y).

To define: The situation if the curves changes from y=f(x) and y=g(x) to x=f(y) and x=g(y) the expression for the exact area.

The expression for the exact area is A=cd[f(y)g(y)]dy.

Explanation of Solution

Consider the two curves x=f(y) and x=g(y).

Here, the right curve function is f(y) and the left curve function is g(y).

Assume f and g are continuous function and f(y)g(y) for cyd.

Here, the bottom limit is c and the top limit is d.

Sketch the two typical curves x=f(y) and x=g(y) is shown in Figure 3.

Single Variable Calculus, Chapter 5, Problem 1RCC , additional homework tip  3

Thus, the two typical curves y=f(x) and y=g(x) are drawn.

Normally the height calculated from the top function minus bottom one and integrating from left to right. Instead of normal calculation, use “right minus left” and integrating from bottom to top. Therefore the exact area, A written as

A=cd[f(y)g(y)]dy

Therefore, the changes of the situation if the curves have equations x=f(y) and x=g(y) is explained.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate the area bounded by the curve obtained by the function given by y = x² - 16, and the lines x=0, x=5, and y=0.  graph.
the weight W of a steel ball bearing varies directly with the cube of the bearing's radius r according to the formula W= 4/3 pi(p)(r)^3, where p is the density of the steel.  The surface area of a bearing varies directly as the square of its radius because A =  4 pi(r^2) a. Express the weight W of a bearing in terms of its surface area b. Express the bearing's surface area A in terms of its weight. c. For steel, p = 7.85 g/cm^3. What s the surface area of a bearing weighing 0.62 g?
a projectile launched at t=0 (t is measured in seconds) follows a path given by x=30t, y=-5t^2+80t, where x is the horizontal direction and y is the upward direction. the projectile lands after  a. 16 seconds b. 8 seconds c. 4seconds

Chapter 5 Solutions

Single Variable Calculus

Ch. 5.1 - Prob. 11ECh. 5.1 - Sketch the region enclosed by the given curves....Ch. 5.1 - Prob. 13ECh. 5.1 - Sketch the region enclosed by the given curves and...Ch. 5.1 - Sketch the region enclosed by the given curves and...Ch. 5.1 - Sketch the region enclosed by the given curves and...Ch. 5.1 - Prob. 17ECh. 5.1 - Prob. 18ECh. 5.1 - Prob. 19ECh. 5.1 - Prob. 20ECh. 5.1 - Sketch the region enclosed by the given curves and...Ch. 5.1 - Prob. 22ECh. 5.1 - Sketch the region enclosed by the given curves and...Ch. 5.1 - Sketch the region enclosed by the given curves and...Ch. 5.1 - Prob. 25ECh. 5.1 - Sketch the region enclosed by the given curves and...Ch. 5.1 - Prob. 27ECh. 5.1 - Prob. 28ECh. 5.1 - Prob. 29ECh. 5.1 - Prob. 30ECh. 5.1 - Prob. 31ECh. 5.1 - Prob. 32ECh. 5.1 - Prob. 33ECh. 5.1 - Prob. 34ECh. 5.1 - Prob. 35ECh. 5.1 - Evaluate the integral and interpret it as the area...Ch. 5.1 - Prob. 37ECh. 5.1 - Prob. 38ECh. 5.1 - Prob. 39ECh. 5.1 - Prob. 40ECh. 5.1 - Prob. 41ECh. 5.1 - Graph the region between the curves and use your...Ch. 5.1 - Prob. 43ECh. 5.1 - Prob. 44ECh. 5.1 - Use a computer algebra system to find the exact...Ch. 5.1 - Prob. 46ECh. 5.1 - Racing cars driven by Chris and Kelly are side by...Ch. 5.1 - The widths (in meters) of a kidney-shaped swimming...Ch. 5.1 - A cross-section of an airplane wing is shown....Ch. 5.1 - If the birth rate of a population is b(t) = 2200 +...Ch. 5.1 - In Example 5, we modeled a measles pathogenesis...Ch. 5.1 - The rates at which rain fell, in inches per hour,...Ch. 5.1 - Two cars, A and B, start side by side and...Ch. 5.1 - The figure shows graphs of the marginal revenue...Ch. 5.1 - Prob. 55ECh. 5.1 - Prob. 56ECh. 5.1 - Prob. 57ECh. 5.1 - (a) Find the number a such that the line x = a...Ch. 5.1 - Find the values of c such that the area of the...Ch. 5.1 - Prob. 60ECh. 5.1 - Prob. 61ECh. 5.1 - Prob. 62ECh. 5.1 - Prob. 63ECh. 5.1 - For what values of m do the line y = mx and the...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - Prob. 10ECh. 5.2 - Prob. 11ECh. 5.2 - Prob. 12ECh. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Prob. 15ECh. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Find the volume of the solid obtained by rotating...Ch. 5.2 - Prob. 18ECh. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Prob. 22ECh. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Prob. 24ECh. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Prob. 28ECh. 5.2 - Refer to the figure and find the volume generated...Ch. 5.2 - Prob. 30ECh. 5.2 - Set up an integral for the volume of the solid...Ch. 5.2 - Set up an integral for the volume of the solid...Ch. 5.2 - Set up an integral for the volume of the solid...Ch. 5.2 - Prob. 34ECh. 5.2 - Prob. 35ECh. 5.2 - Prob. 36ECh. 5.2 - Use a computer algebra system to find the exact...Ch. 5.2 - Use a computer algebra system to find the exact...Ch. 5.2 - Prob. 39ECh. 5.2 - Prob. 40ECh. 5.2 - Prob. 41ECh. 5.2 - Prob. 42ECh. 5.2 - A CAT scan produces equally spaced cross-sectional...Ch. 5.2 - Prob. 44ECh. 5.2 - Prob. 45ECh. 5.2 - Prob. 46ECh. 5.2 - Prob. 47ECh. 5.2 - Find the volume of the described solid S. 48.A...Ch. 5.2 - Find the volume of the described solid S. 49.A cap...Ch. 5.2 - Find the volume of the described solid S. 50. A...Ch. 5.2 - Prob. 51ECh. 5.2 - Find the volume of the described solid S. 52. A...Ch. 5.2 - Prob. 53ECh. 5.2 - Find the volume of the described solid S. 54. The...Ch. 5.2 - Find the volume of the described solid S. 55. The...Ch. 5.2 - Prob. 56ECh. 5.2 - Prob. 57ECh. 5.2 - Prob. 58ECh. 5.2 - Prob. 59ECh. 5.2 - Prob. 60ECh. 5.2 - Prob. 61ECh. 5.2 - The base of S is a circular disk with radius r....Ch. 5.2 - (a) Set up an integral for the volume of a solid...Ch. 5.2 - Prob. 64ECh. 5.2 - (a) Cavalieris Principle states that if a family...Ch. 5.2 - Find the volume common to two circular cylinders,...Ch. 5.2 - Prob. 67ECh. 5.2 - A bowl is shaped like a hemisphere with diameter...Ch. 5.2 - A hole of radius r is bored through the middle of...Ch. 5.2 - A hole of radius r is bored through the center of...Ch. 5.2 - Prob. 71ECh. 5.2 - Suppose that a region R has area A and lies above...Ch. 5.3 - Let S be the solid obtained by rotating the region...Ch. 5.3 - Let S be the solid obtained by rotating the region...Ch. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - Prob. 7ECh. 5.3 - Let V be the volume of the solid obtained by...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - Use the method of cylindrical shells to find the...Ch. 5.3 - (a) Set up an integral for the volume of the solid...Ch. 5.3 - Prob. 22ECh. 5.3 - Prob. 23ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - If the region shown in the figure is rotated about...Ch. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Prob. 31ECh. 5.3 - Prob. 32ECh. 5.3 - Prob. 33ECh. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Use a computer algebra system to find the exact...Ch. 5.3 - Prob. 37ECh. 5.3 - Prob. 38ECh. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.3 - Prob. 43ECh. 5.3 - Let T be the triangular region with vertices (0,...Ch. 5.3 - Prob. 45ECh. 5.3 - Use cylindrical shells to find the volume of the...Ch. 5.3 - Prob. 47ECh. 5.3 - Suppose you make napkin rings by drilling holes...Ch. 5.4 - A 360-lb gorilla climbs a tree to a height of 20...Ch. 5.4 - How much work is done when a hoist lifts a 200-kg...Ch. 5.4 - Prob. 3ECh. 5.4 - Prob. 4ECh. 5.4 - Shown is the graph of a force function (in...Ch. 5.4 - Prob. 6ECh. 5.4 - Prob. 7ECh. 5.4 - A spring has a natural length of 40 cm. If a 60-N...Ch. 5.4 - Suppose that 2 J of work is needed to stretch a...Ch. 5.4 - Prob. 10ECh. 5.4 - Prob. 11ECh. 5.4 - Prob. 12ECh. 5.4 - Prob. 13ECh. 5.4 - Prob. 14ECh. 5.4 - Prob. 15ECh. 5.4 - Prob. 16ECh. 5.4 - Show how to approximate the required work by a...Ch. 5.4 - Prob. 18ECh. 5.4 - Prob. 19ECh. 5.4 - Show how to approximate the required work by a...Ch. 5.4 - Prob. 21ECh. 5.4 - Show how to approximate the required work by a...Ch. 5.4 - A tank is full of water. Find the work required to...Ch. 5.4 - A tank is full of water. Find the work required to...Ch. 5.4 - A tank is full of water. Find the work required to...Ch. 5.4 - A tank is full of water. Find the work required to...Ch. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - When gas expands in a cylinder with radius r, the...Ch. 5.4 - In a steam engine the pressure P and volume V of...Ch. 5.4 - The kinetic energy KE of an object of mass m...Ch. 5.4 - Suppose that when launching an 800-kg roller...Ch. 5.4 - Prob. 33ECh. 5.4 - The Great Pyramid of King Khufu was built of...Ch. 5.5 - Find the average value of the function on the...Ch. 5.5 - Prob. 2ECh. 5.5 - Find the average value of the function on the...Ch. 5.5 - Prob. 4ECh. 5.5 - Prob. 5ECh. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - (a) Find the average value of f on the given...Ch. 5.5 - Prob. 10ECh. 5.5 - Prob. 11ECh. 5.5 - Prob. 12ECh. 5.5 - If f is continuous and 13f(x)dx=8, show that f...Ch. 5.5 - Prob. 14ECh. 5.5 - Find the average value of f on [0, 8].Ch. 5.5 - The velocity graph of an accelerating car is...Ch. 5.5 - Prob. 17ECh. 5.5 - The velocity v of blood that flows in a blood...Ch. 5.5 - The linear density in a rod 8 m long is...Ch. 5.5 - Prob. 20ECh. 5.5 - Prob. 21ECh. 5.5 - Use the diagram to show that if f is concave...Ch. 5.5 - Prob. 23ECh. 5.5 - Prob. 24ECh. 5 - (a) Draw two typical curves y = f(x) and y = g(x),...Ch. 5 - Prob. 2RCCCh. 5 - Prob. 3RCCCh. 5 - Prob. 4RCCCh. 5 - Prob. 5RCCCh. 5 - Prob. 6RCCCh. 5 - Prob. 1RECh. 5 - Find the area of the region bounded by the given...Ch. 5 - Find the area of the region bounded by the given...Ch. 5 - Prob. 4RECh. 5 - Prob. 5RECh. 5 - Prob. 6RECh. 5 - Prob. 7RECh. 5 - Prob. 8RECh. 5 - Prob. 9RECh. 5 - Prob. 10RECh. 5 - Find the volume of the solid obtained by rotating...Ch. 5 - Set up, but do not evaluate, an integral for the...Ch. 5 - Prob. 13RECh. 5 - Set up, but do not evaluate, an integral for the...Ch. 5 - Find the volumes of the solids obtained by...Ch. 5 - Let R be the region in the first quadrant bounded...Ch. 5 - Prob. 17RECh. 5 - Let R be the region bounded by the curves y = 1 ...Ch. 5 - Prob. 19RECh. 5 - Prob. 20RECh. 5 - Prob. 21RECh. 5 - Prob. 22RECh. 5 - Prob. 23RECh. 5 - Prob. 24RECh. 5 - The height of a monument is 20 m. A horizontal...Ch. 5 - Prob. 26RECh. 5 - Prob. 27RECh. 5 - Prob. 28RECh. 5 - A tank full of water has the shape of a paraboloid...Ch. 5 - A steel tank has the shape of a circular cylinder...Ch. 5 - Prob. 31RECh. 5 - (a) Find the average value of the function...Ch. 5 - If f is a continuous function, what is the limit...Ch. 5 - Let R1 be the region bounded by y = x2, y = 0, and...Ch. 5 - Prob. 1PCh. 5 - There is a line through the origin that divides...Ch. 5 - The figure shows a horizontal line y = c...Ch. 5 - A cylindrical glass of radius r and height L is...Ch. 5 - (a) Show that the volume of a segment of height h...Ch. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - The figure shows a curve C with the property that,...Ch. 5 - A paper drinking cup filled with water has the...Ch. 5 - A clepsydra, or water clock, is a glass container...Ch. 5 - A cylindrical container of radius r and height L...Ch. 5 - Prob. 13PCh. 5 - If the tangent at a point P on the curve y = x3...
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY