Concept explainers
(a)
An example of motion in which the magnitude of the instantaneous velocity is always larger than the average velocity.
(a)

Answer to Problem 1Q
Circular motion is an example of motion in which the magnitude of the instantaneous velocity is always larger than the average velocity.
Explanation of Solution
Instantaneous velocity is the rate of change of position with respect to time. Whereas the average velocity is the displacement divided by the corresponding time. When an object performs a circular motion, the instantaneous velocity is always greater than the average velocity. This is because the average velocity over any complete cycle is zero since the displacement is zero. But instantaneous velocity assumes some finite value at any given time.
It is obeyed for any object which is accelerating continuously in the direction of velocity.
Conclusion:
Therefore, Circular motion is an example of motion in which the magnitude of the instantaneous velocity is always larger than the average velocity.
(b)
Example of motion having instantaneous velocity is never parallel to the instantaneous acceleration.
(b)

Answer to Problem 1Q
In uniform circular motion, the instantaneous velocity is always perpendicular to the instantaneous acceleration.
Explanation of Solution
During uniform circular motion, the object is moving with constant speed, as the object moves in a circle the change in direction is also conatnt.it is an example of motion having instantaneous velocity is never parallel to the instantaneous acceleration.
Conclusion:
Therefore, in uniform circular motion, the instantaneous velocity is always perpendicular to the instantaneous acceleration.
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: College Physics: Reasoning And Relationships, 2nd + Webassign Printed Access Card For Giordano's College Physics, Volume 1, 2nd Edition, Multi-term
- A pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forwardCheckpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forward
- 3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





