
(a)
The type of volcano seen in the image and the features that were helpful in classification.
(a)

Answer to Problem 1GST
Since the volcano owes a large and symmetrical structure with steep apex region and gently steep flanks, it may be considered under the category of composite volcanoes.
Explanation of Solution
The alternate layering of cinders and ash that are erupted, interbedded lava flows with an almost symmetrical and large structure is a characteristic of a typical composite cone. Composite cones, also known as stratovolcanoes, are very active and exist in basaltic, andesitic, and at times rhyolitic compositions. They usually eject less fluid lava capable of covering a small distance.
The symmetrical and large morphological appearance of a composite volcano matches with the structure of volcano given in the image. Moreover, the volcano possesses gentle slopes and a steep apex portion, and thus can be taken as a composite volcano.
(b)
To describe: The eruptive style of the volcano seen in the image along with its magma composition and viscosity.
(b)

Answer to Problem 1GST
Generally, a typical composite volcano is very active and explosive and may be composed of “less fluid andesitic magma flows having alternating layers of pyroclasts and ash interbedded with lava flows that are fluid basaltic.”
Explanation of Solution
The alternate layering of cinders and ash that are erupted interbedded lava flows with an almost symmetrical and large structure is a characteristic of a typical composite cone. Because of this layered structure, they can also be called as stratovolcanoes.
Composite cones are usually considered as active and explosive ones with steep apex regions and gently sloping flanks that produce huge quantities of pyroclasts. The word “composite” becomes meaningful in case of this volcano, as it consists of both lava flows and pyroclasts.
Commonly, the composite cones are said to be products of silica-enriched magma having an andesitic composition. Yet, there are several composite cones that expel fluid basaltic lava and infrequently some may give off pyroclasts with a rhyolitic composition. Thus, it may be concluded that the composite cones from andesitic magma give viscous and thick lava capable of travelling not more than a few kilometers, whereas the fluid and less viscous lava from the composite cones of basaltic composition can travel longer distances.
(c)
To describe: The plate boundary associated with the type of volcano given in the image.
(c)

Answer to Problem 1GST
Convergent plate boundaries are involved in the formation of composite cones.
Explanation of Solution
The alternate layering of cinders and ash that are erupted interbedded lava flows with an almost symmetrical and large structure is a characteristic of a typical composite cone. Because of this layered structure, they can be also called as stratovolcanoes.
Composite cones are usually considered as active and explosive ones with steep apex regions and gently sloping flanks that produce huge quantities of pyroclasts. The word “composite” becomes meaningful in case of this volcano, as it consists of both lava flows and pyroclasts.
Generally, a typical composite volcano is very active and explosive and may be composed of “andesitic magma flows having alternating layers of pyroclasts and ash interbedded with lava flows that are basaltic.” They may have a less fluid but silica-rich, andesitic to rhyolitic composition.
The area with the largest number of composite volcanoes is situated in an active zone bordering the Pacific Ocean, which is given the name ‘Ring of Fire’. The Ring of Fire known for active volcanism encloses majority of the world’s active volcanoes. The Ring of Fire lies in the circum-Pacific belt, which is the convergence zone where the denser oceanic plate subducts beneath the less dense plate. Composite volcanoes are produced from the convergence of an oceanic plate and a continental plate.
(d)
To name: A city prone to the effects of the type of volcano shown in the image.
(d)

Answer to Problem 1GST
Washington’s Seattle is a city prone to the effects of a composite cone.
Explanation of Solution
Composite cones are usually considered as active and explosive ones with steep apex regions and gently sloping flanks that produce huge quantities of pyroclasts. The word “composite” becomes meaningful in case of this volcano, as it consists of both lava flows and pyroclasts. They are very destructive, in the sense that they produce pyroclastic flows, which are very deadly and mudflows.
Seattle, which is a seaport city in Washington, lies in the Pacific Ring of Fire, and hence it is susceptible to eruptive volcanism related to composite cones.
Want to see more full solutions like this?
Chapter 5 Solutions
Essentials of Geology (13th Edition)
- Dike K H Fault L Figure 10.12 Geologic block diagram of a hypothetical area. C Youngest B Intrusion J Oldest "arrow_forwardChrome File Edit View History 0 O ↑ X O SIS Ω 4-511 6 Bookmarks Profiles Tab Window Help X 4-510 X 4-509 + cl.castlelearning.com/Review/CLO/Student/Assignment/Questions?assignmentID=13205009&tid=9976762 0 Qad c 4-511 Select Language 98 Mon May 5 5:26 PM Relaunch to update CED Sal Salvatore Burgio 5009 Which cross section best represents the pattern of sediments deposited on the bottom of a lake as the velocity of the stream entering the lake steadily decreased? -Top 2. esc Bottom Top Bottom Top Bottom Top Bottom Submit Answer Zoom: Standard Note Bookmark Eliminator Highlighter Line Reader Reference Calculator Ruter Protractor MAY LO XA tv N Aa MacBook Pro C D Search or type URL ABGAB 1 2 # $ % & 3 4 5 6 7 8 00 Q W E R T Y U tab A S D F G caps lock shift H H ( 9 0 O + 11 Listen P [ ] J K L ? Z X C V B N M H command option L H fn control option command delete return shiftarrow_forwardI need help with part b and c. I don't want an explanation I need the actual graph, because it's hard to understand an explanation without showing what they mean.arrow_forward
- I need help with part b and c. I don't want an explanation I need the actual graph preferably broken down, because it's hard to understand an explanation without showing what they mean.arrow_forwardI need help with part b and c I don't know how to draw it.arrow_forwardI need help on part barrow_forward
- I need help with part carrow_forwardCan someone one sketch this and show me step by step how they did it.arrow_forward4. What is the geologic range of the fossil shown in Figure 10.15? From the Ordovician period through the Permian period. 5. What is the geologic range of the fossil shown in Figure 10.16? From the Cambrian period through the Permian period. 6. Imagine that you have discovered a rock outcrop that contains the fossils identified in Questions 4 and 5. What is the geologic range of this rock?From theperiod through the period.arrow_forward
- 4. What is the geologic range of the fossil shown in Figure 10.15? From the period through the period5. What is the geologic range of the fossil shown in Figure 10.16? From the period through the period.arrow_forwardACTIVITY 10.6 Types of Fossils Pg 174 1. Refer to Figure 10.13. Which photo(s) (A-1) best illustrate(s) the methods of fossilization or fossil evidence listed below? (Photos/letters may be used more than once.)Permineralization: The small internal cavities and pores of an original organism that are filled with precipitated mineral matter. Photo(s):Cast: The space once occupied by a dissolved shell or other structure that is subsequently filled with mineral matter. Photo(s):Carbonization: Preservation that occurs when fine sediment encases delicate plant or animal forms and leaves a residue of carbon, Photo(s):Impression: A replica of an organism, such as a leaf, left in fine-grained sedimentary rock. Photo(s):Amber: Hardened resin of ancient trees that preserved delicate organisms such as insects. Photo(s):Indirect evidence: Traces of prehistoric life but not the organism itself. Photo(s):arrow_forwardACTIVITY 10.7 Fossils as Time Indicators Pgs 175-176Use Figure 10.14, page 175, to complete the following. 1. What is the geologic range of plants that belong to the group Ginkgo?From theperiod through theperiod. 2. What is the geologic range of Lepidodendron, an extinct coal-producing plant?From theperiod through theperiod. 3. Imagine that you have discovered an outcrop of sedimentary rock that contains fossil shark teeth and fossils of Archimedes. In which time periods might this rock have formed?From theperiod through theperiod.arrow_forward
- Applications and Investigations in Earth Science ...Earth ScienceISBN:9780134746241Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONExercises for Weather & Climate (9th Edition)Earth ScienceISBN:9780134041360Author:Greg CarbonePublisher:PEARSONEnvironmental ScienceEarth ScienceISBN:9781260153125Author:William P Cunningham Prof., Mary Ann Cunningham ProfessorPublisher:McGraw-Hill Education
- Earth Science (15th Edition)Earth ScienceISBN:9780134543536Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONEnvironmental Science (MindTap Course List)Earth ScienceISBN:9781337569613Author:G. Tyler Miller, Scott SpoolmanPublisher:Cengage LearningPhysical GeologyEarth ScienceISBN:9781259916823Author:Plummer, Charles C., CARLSON, Diane H., Hammersley, LisaPublisher:Mcgraw-hill Education,





