Concept explainers
Select the true statement regarding accelerations of the cars.

Answer to Problem 1FC
Option C, “Car A is not accelerating, but Car B is accelerating” is true.
Explanation of Solution
Description:
When the car is travelling through a straight path with a constant speed, the car remains in equilibrium. The magnitude and direction of acceleration are zero at equilibrium. Car A is travelling through a straight path and hence it is not accelerating.
While the car travels through a curved path or a turn, the motion of car turns in a circular motion. Hence, the centripetal acceleration exists since it is not in equilibrium. Therefore, the acceleration is present while moving through the curve. Car B is travelling in a curved path and hence car B is accelerating.
Conclusion:
Thus, option C., “Car A is not accelerating, but car B is accelerating” is true.
Want to see more full solutions like this?
Chapter 5 Solutions
PHYSICS-WILEYPLUS W/LOOSE-LEAF BOOK
- Because you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below. This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…arrow_forwardAn artificial satellite circling the Earth completes each orbit in 136 minutes. (a) Find the altitude of the satellite. m (b) What is the value of g at the location of this satellite? m/s²arrow_forwardA car is traveling on a banked curve as shown in the figure below. The radius of curvature of the road is R, the banking angle is 0, and the coefficient of static friction is μs. nx R A ny (a) Determine the range of speeds the car can have without slipping up or down the road. (Use any variable or symbol stated above along with the following as necessary: g. Note that the subscript of V min = Vmax = (b) Find the minimum value for μ such that the minimum speed is zero. (Use the following as necessary: R, 0, and g.) μs = μs is lowercase.)arrow_forward
- Use the data of this table to find the point between Pluto and the Sun at which an object can be placed so that the net gravitational force exerted by Pluto and Sun on that object is zero. m from the center of Plutoarrow_forward(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 × 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 × 104 m/s relative to the Sun, what is the increase in speed needed from the gravitational slingshot at Jupiter for the space probe to escape the solar system (in m/s)? (Assume that the Earth and the point on Jupiter's orbit lie along the same…arrow_forwardA spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 860 kg. It has strayed too close to a black hole having a mass 98 times that of the Sun. The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. H 100 m- Black hole //10.0 km/ i (a) Determine the total force on the spacecraft. N (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? (This difference in acceleration grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.) N/kgarrow_forward
- Three uniform spheres of masses m₁ = 3.00 kg, m₂ = 4.00 kg, and m3 = 6.50 kg are placed at the corners of a right triangle (see figure below). Calculate the resultant gravitational force on the object of mass m2, assuming the spheres are isolated from the rest of the Universe. Ĵ) × 10-11 N Î + (0, 3.00) m 1)x m₁ (-4.00, 0) m F12 m3 32 0 x m2arrow_forwardA spring with unstretched length of 14.3 cm has a spring constant of 4.63 N/m. The spring is lying on a horizontal surface, and is attached at one end to a vertical post. The spring can move freely around the post. The other end of the spring is attached to a puck of mass m. The puck is set into motion in a circle around the post with a period of 1.32 s. Assume the surface is frictionless, and the spring can be described by Hooke's law. (a) What is the extension of the spring as a function of m? (Assume x is in meters and m is in kilograms. Do not include units in your answer.) x = Find x (in meters) for the following masses. (If not possible, enter IMPOSSIBLE.) (b) m = 0.0700 kg m (c) m = 0.140 kg (d) m 0.180 kg m m (e) m = 0.210 kg marrow_forwardA stuntman whose mass is 62 kg swings from the end of a 4.1-m-long rope along the arc of a vertical circle. Assuming that he starts from rest when the rope is horizontal, find the magnitudes of the tensions in the rope that are required to make him follow his circular path at each of the following points. (a) at the beginning of his motion KN (b) at a height of 1.5 m above the bottom of the circular arc KN (c) at the bottom of the arc KNarrow_forward
- (a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel.arrow_forwardShown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m -54.3 m 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. N (c) Find the magnitude (in N) of the force the…arrow_forwardYou have an internship working at a company that designs and produces washing and drying equipment. Your supervisor is in the process of designing a new, very large dryer to be used in commercial establishments with intense laundry needs, such as restaurants (tablecloths, napkins) and hotels (sheets, towels). In a dryer, a cylindrical tub containing wet material is rotated steadily about a horizontal axis as shown in the figure below. 0 So that the material will dry uniformly, it is made to tumble. The rate of rotation of the smooth-walled tub is chosen so that a small piece of cloth will lose contact with the tub when the cloth is at an angle of 0 = 71.0° above the horizontal. Your supervisor's tub is designed to have a radius of r = 1.23 m and she asks you to determine the appropriate rate of revolution. (Give your answer in rev/min.) rev/minarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





