Concept explainers
The term used for the repeating back-and-forth motion, from the following options.
spring.
vibration.
wave.
pulse.
Answer to Problem 1AC
Solution:
Option (b) is correct.
Explanation of Solution
Reason for the correct options:
The term vibration is used for the motion of a particle which repeats itself. Hence, a back-and-forth motion that repeats itself is termed as a vibration.
Hence, option (b) is correct.
Reason for the incorrect options:
Option (a) is incorrect because spring itself does not create back-and-forth motion. When the spring is attached with a mass at its end and can compress or stretch, then the motion it creates is back-and-forth motion about its unstretched position. So, it is a wrong answer.
Option (c) is incorrect because the wave is an example of back-and-forth motion but in this case, the movement may or may not involve matter. It does not repeat itself. So, it is a wrong answer.
Option (d) is incorrect because the pulse is a type of non-sinusoidal wave. It is a type of back-and-forth motion, but it does not repeat itself. So, it is a wrong answer.
Hence, options (a), (c) and (d) are incorrect.
Conclusion:
The vibration is a repeating back-and-forth motion.
Want to see more full solutions like this?
Chapter 5 Solutions
TOPICS IN PHYSICAL SCIENCE
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College