ALEKS 360 AC INTRD CHEM >I<
5th Edition
ISBN: 9781260977585
Author: BAUER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 108QP
Interpretation Introduction
Interpretation:
The net ionic equation for the reaction of copper metal with silver nitrate in aqueous solution is to be written.
Concept Introduction:
A net ionic equation contains active ions and the product formed on the reaction of active ions. The net ionic equation does not contain spectator ions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
ALEKS 360 AC INTRD CHEM >I<
Ch. 5 - Prob. 1QCCh. 5 - Prob. 2QCCh. 5 - Prob. 3QCCh. 5 - Prob. 4QCCh. 5 - Prob. 5QCCh. 5 - Prob. 1PPCh. 5 - Prob. 2PPCh. 5 - Prob. 3PPCh. 5 - Prob. 4PPCh. 5 - Prob. 5PP
Ch. 5 - Prob. 6PPCh. 5 - Prob. 7PPCh. 5 - Prob. 8PPCh. 5 - Prob. 9PPCh. 5 - Prob. 10PPCh. 5 - Prob. 11PPCh. 5 - Calcium oxide is the white powder, lime. When...Ch. 5 - Prob. 13PPCh. 5 - Prob. 14PPCh. 5 - Prob. 1QPCh. 5 - Prob. 2QPCh. 5 - Prob. 3QPCh. 5 - Prob. 4QPCh. 5 - Prob. 5QPCh. 5 - Prob. 6QPCh. 5 - Prob. 7QPCh. 5 - Prob. 8QPCh. 5 - Prob. 9QPCh. 5 - Prob. 10QPCh. 5 - Prob. 11QPCh. 5 - Prob. 12QPCh. 5 - Prob. 13QPCh. 5 - Prob. 14QPCh. 5 - Prob. 15QPCh. 5 - Prob. 16QPCh. 5 - Prob. 17QPCh. 5 - Prob. 18QPCh. 5 - Prob. 19QPCh. 5 - Prob. 20QPCh. 5 - Prob. 21QPCh. 5 - Prob. 22QPCh. 5 - Prob. 23QPCh. 5 - Prob. 24QPCh. 5 - Prob. 25QPCh. 5 - Prob. 26QPCh. 5 - Write complete, balanced equations for each of the...Ch. 5 - Prob. 28QPCh. 5 - Prob. 29QPCh. 5 - Prob. 30QPCh. 5 - Prob. 31QPCh. 5 - Prob. 32QPCh. 5 - Prob. 33QPCh. 5 - Prob. 34QPCh. 5 - Prob. 35QPCh. 5 - Prob. 36QPCh. 5 - Prob. 37QPCh. 5 - Prob. 38QPCh. 5 - Prob. 39QPCh. 5 - Prob. 40QPCh. 5 - Prob. 41QPCh. 5 - Prob. 42QPCh. 5 - Prob. 43QPCh. 5 - Prob. 44QPCh. 5 - Prob. 45QPCh. 5 - Prob. 46QPCh. 5 - Prob. 47QPCh. 5 - Prob. 48QPCh. 5 - Prob. 49QPCh. 5 - Prob. 50QPCh. 5 - Prob. 51QPCh. 5 - Prob. 52QPCh. 5 - Prob. 53QPCh. 5 - Prob. 54QPCh. 5 - Prob. 55QPCh. 5 - Prob. 56QPCh. 5 - Prob. 57QPCh. 5 - Prob. 58QPCh. 5 - Prob. 59QPCh. 5 - Prob. 60QPCh. 5 - Prob. 61QPCh. 5 - Prob. 62QPCh. 5 - Prob. 63QPCh. 5 - Prob. 64QPCh. 5 - Prob. 65QPCh. 5 - Prob. 66QPCh. 5 - Prob. 67QPCh. 5 - Prob. 68QPCh. 5 - Prob. 69QPCh. 5 - Prob. 70QPCh. 5 - Prob. 71QPCh. 5 - Prob. 72QPCh. 5 - Prob. 73QPCh. 5 - Prob. 74QPCh. 5 - Prob. 75QPCh. 5 - Prob. 76QPCh. 5 - Prob. 77QPCh. 5 - Prob. 78QPCh. 5 - Prob. 79QPCh. 5 - Consider the following double-displacement...Ch. 5 - Write a balanced equation to describe any...Ch. 5 - Write a balanced equation to describe any...Ch. 5 - Prob. 83QPCh. 5 - Prob. 84QPCh. 5 - Prob. 85QPCh. 5 - Prob. 86QPCh. 5 - Prob. 87QPCh. 5 - Prob. 88QPCh. 5 - Prob. 89QPCh. 5 - Prob. 90QPCh. 5 - Prob. 91QPCh. 5 - Prob. 92QPCh. 5 - Prob. 93QPCh. 5 - Prob. 94QPCh. 5 - Prob. 95QPCh. 5 - Prob. 96QPCh. 5 - Prob. 97QPCh. 5 - Why is it necessary to identify a substance as an...Ch. 5 - Prob. 99QPCh. 5 - Prob. 100QPCh. 5 - Prob. 101QPCh. 5 - Prob. 102QPCh. 5 - Prob. 103QPCh. 5 - Prob. 104QPCh. 5 - Prob. 105QPCh. 5 - Prob. 106QPCh. 5 - Prob. 107QPCh. 5 - Prob. 108QPCh. 5 - Prob. 109QPCh. 5 - Prob. 110QPCh. 5 - Predict whether reactions should occur between...Ch. 5 - Prob. 112QPCh. 5 - Prob. 113QPCh. 5 - Prob. 114QPCh. 5 - Prob. 115QPCh. 5 - Prob. 116QPCh. 5 - Prob. 117QPCh. 5 - Prob. 118QPCh. 5 - Prob. 119QPCh. 5 - Prob. 120QPCh. 5 - Prob. 121QPCh. 5 - Prob. 122QPCh. 5 - Prob. 123QPCh. 5 - Prob. 124QPCh. 5 - Prob. 125QPCh. 5 - Prob. 126QPCh. 5 - Prob. 127QPCh. 5 - Prob. 128QPCh. 5 - Prob. 129QPCh. 5 - Prob. 130QPCh. 5 - Prob. 131QPCh. 5 - Prob. 132QPCh. 5 - Prob. 133QPCh. 5 - Prob. 134QPCh. 5 - Prob. 135QPCh. 5 - Prob. 136QPCh. 5 - Prob. 137QPCh. 5 - Prob. 138QPCh. 5 - Prob. 139QPCh. 5 - Prob. 140QPCh. 5 - Prob. 141QPCh. 5 - Prob. 142QPCh. 5 - Prob. 143QPCh. 5 - Prob. 144QPCh. 5 - Prob. 145QPCh. 5 - Prob. 146QPCh. 5 - Prob. 147QPCh. 5 - Prob. 148QPCh. 5 - Prob. 149QPCh. 5 - Prob. 150QPCh. 5 - Prob. 151QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Describe in words how you would prepare pure crystalline AgCl and NaNO3 from solid AgNO3 and solid NaCl.arrow_forwardWrite the net ionic equation for the reaction, if any, that occurs on mixing (a) solutions of sodium hydroxide and magnesium chloride. (b) solutions of sodium nitrate and magnesium bromide. (c) magnesium metal and a solution of hydrochloric acid to produce magnesium chloride and hydrogen. Magnesium metal reacting with HCl.arrow_forward1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forward
- An aqueous sample is known to contain either Mg2+ or Ba2+ ions. Treatment of the sample with Na2CO3 produces a precipitate, but treatment with ammonium sulfate does not. Use the solubility rules (see Table 4.1) to determine which cation is present.arrow_forwardTriiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: IO3(aq) + I(aq) I3(aq) Triiodide ion concentration is determined by titration with a sodium thiosulfate (Na2S2O3) solution. The products are iodide ion and tetrathionate ion (S4O6). a. Balance the equation for the reaction of IO3 with I ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HQ required to convert all of the IO3 ions to I ions? c. Write and balance the equation for the reaction of S2O32 with I3 in acidic solution. d. A 25.00-mL sample of a 0.0100 M solution of KIO. is reacted with an excess of KI. It requires 32.04 mL of Na2S2O3 solution to titrate the I3 ions present. What is the molarity of the Na2S2O3 solution? e. How would you prepare 500.0 mL of the KIO3 solution in part d using solid KIO3?arrow_forwardSeparate samples of a solution of an unknown soluble ionic compound are treated with KCl, Na2SO4, and NaOH. A precipitate forms only when Na2SO4 is added. Which cations could be present in the unknown soluble ionic compound?arrow_forward
- The Behavior of Substances in Water Part 1: a Ammonia, NH3, is a weak electrolyte. It forms ions in solution by reacting with water molecules to form the ammonium ion and hydroxide ion. Write the balanced chemical reaction for this process, including state symbols. b From everyday experience you are probably aware that table sugar (sucrose), C12H22O11, is soluble in water. When sucrose dissolves in water, it doesnt form ions through any reaction with water. It just dissolves without forming ions, so it is a nonelectrolyte. Write the chemical equation for the dissolving of sucrose in water. c Both NH3 and C12H22O11 are soluble molecular compounds, yet they behave differently in aqueous solution. Briefly explain why one is a weak electrolyte and the other is a nonelectrolyte. d Hydrochloric acid, HCl, is a molecular compound that is a strong electrolyte. Write the chemical reaction of HCl with water. e Compare the ammonia reaction with that of hydrochloric acid. Why are both of these substances considered electrolytes? f Explain why HCl is a strong electrolyte and ammonia is a weak electrolyte. g Classify each of the following substances as either ionic or molecular. KCl NH3 CO2 MgBr2 HCl Ca(OH)2 PbS HC2H3O2 h For those compounds above that you classified as ionic, use the solubility rules to determine which are soluble. i The majority of ionic substances are solids at room temperature. Describe what you would observe if you placed a soluble ionic compound and an insoluble ionic compound in separate beakers of water. j Write the chemical equation(s), including state symbols, for what happens when each soluble ionic compound that you identified above is placed in water. Are these substances reacting with water when they are added to water? k How would you classify the soluble ionic compounds: strong electrolyte, weak electrolyte, or nonelectrolyte? Explain your answer. l Sodium chloride, NaCl, is a strong electrolyte, as is hydroiodic acid, HI. Write the chemical equations for what happens when these substances are added to water. m Are NaCl and HI strong electrolytes because they have similar behavior in aqueous solution? If not, describe, using words and equations, the different chemical process that takes place in each case. Part 2: You have two hypothetical molecular compounds, AX and AY. AX is a strong electrolyte and AY is a weak electrolyte. The compounds undergo the following chemical reactions when added to water. AX(aq)+H2O(l)AH2O+(aq)+X(aq)AY(aq)+H2O(l)AH2O+(aq)+Y(aq) a Explain how the relative amounts of AX(aq) and AY(aq) would compare if you had a beaker of water with AX and a beaker of water with AY. b How would the relative amounts of X(aq) and Y(aq) in the two beakers compare? Be sure to explain your answer.arrow_forwardArsenic acid, H3AsO4, is a poisonous acid that has been used in the treatment of wood to prevent insect damage. Arsenic acid has three acidic protons. Say you take a 25.00-mL sample of arsenic acid and prepare it for titration with NaOH by adding 25.00 mL of water. The complete neutralization of this solution requires the addition of 53.07 mL of 0.6441 M NaOH solution. Write the balanced chemical reaction for the titration, and calculate the molarity of the arsenic acid sample.arrow_forwardA student is asked to identify the metal nitrate present in an aqueous solution. The cation in the solution can be either Na+, Ba2+, Ag+, or Ni2+. Results of solubility experiments are as follows: unknown + chloride ions—no precipitate unknown + carbonate ions—precipitate unknown + sulfate ions—precipitate What is the cation in the solution?arrow_forward
- Many plants are poisonous because their stems and leaves contain oxalic acid H2C2O4, or sodium oxalate, Na2C2O4. When ingested, these substances cause swelling of the respiratory tract and suffocation. A standard analysis for determining the amount of oxalate ion, C2O42 in a sample is to precipitate this species as calcium oxalate, which is insoluble in water. Write die net ionic equation for the reaction between sodium oxalate and calcium chloride. CaCl2, in aqueous solution.arrow_forwardA 1.345-g sample of a compound of barium and oxygen was dissolved in hydrochloric acid to give a solution of barium ion, which was then precipitated with an excess of potassium chromate to give 2.012 g of barium chromate, BaCrO4. What is the formula of the compound?arrow_forwardA 25.0-mL sample of sodium sulfate solution was analyzed by adding an excess of barium chloride solution to produce barium sulfate crystals, which were filtered from the solution. Na2SO4(aq)+BaCl2(aq)2NaCl(aq)+BaSO4(s) If 5.719 g of barium sulfate was obtained, what was the molarity of the original Na2SO4 solution?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY