EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 106P
(a)
To determine
To Find: The height of the center of mass of the can plus the water remaining in the can?
(b)
To determine
To Find:The minimum height of the centreof mass as the water drains out.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure below shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length L = 51 cm.
(a) Find the x coordinate of the center of mass of the box.
cm
(b) Find the y coordinate of the center of mass of the box.
cm
(c) Find the z coordinate of the center of mass of the box.
cm
Additional Materials
O eBook
A lamina occupies the part of the rectangle 0 ≤ x ≤ 1,0 ≤ y ≤ 3 and the density at each point is given by the function
p(x, y) = 5x + 4y + 6.
A. What is the total mass? 87/2
B. Where is the center of mass? (
a) A metal sign has a shape of a right triangle whose dimensions are shown in figure. Determine the y coordinate
of the centre of mass, assuming that the triangular sign has a uniform density and total mass M.
b.
b) Two friends of masses 40 kg and 60 kg are standing at the two extremes of a 6 m long boat of mass 100 kg.
Sistem is at rest. Neglect the friction between water and boat. Find the displacement of the boat when both men
move and interchange their positions.
40 kg
60 kg
B
100 kg
6m
Chapter 5 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - Prob. 10P
Ch. 5 - Prob. 11PCh. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 28PCh. 5 - Prob. 29PCh. 5 - Prob. 30PCh. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 65PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - Prob. 73PCh. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77PCh. 5 - Prob. 78PCh. 5 - Prob. 79PCh. 5 - Prob. 80PCh. 5 - Prob. 82PCh. 5 - Prob. 83PCh. 5 - Prob. 84PCh. 5 - Prob. 85PCh. 5 - Prob. 86PCh. 5 - Prob. 87PCh. 5 - Prob. 88PCh. 5 - Prob. 89PCh. 5 - Prob. 90PCh. 5 - Prob. 91PCh. 5 - Prob. 92PCh. 5 - Prob. 93PCh. 5 - Prob. 94PCh. 5 - Prob. 95PCh. 5 - Prob. 96PCh. 5 - Prob. 97PCh. 5 - Prob. 101PCh. 5 - Prob. 102PCh. 5 - Prob. 103PCh. 5 - Prob. 104PCh. 5 - Prob. 105PCh. 5 - Prob. 106PCh. 5 - Prob. 107PCh. 5 - Prob. 108PCh. 5 - Prob. 109PCh. 5 - Prob. 110PCh. 5 - Prob. 111PCh. 5 - Prob. 112PCh. 5 - Prob. 113PCh. 5 - Prob. 114PCh. 5 - Prob. 115PCh. 5 - Prob. 116PCh. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Prob. 120PCh. 5 - Prob. 121PCh. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - Prob. 124PCh. 5 - Prob. 125PCh. 5 - Prob. 126PCh. 5 - Prob. 127PCh. 5 - Prob. 128PCh. 5 - Prob. 129PCh. 5 - Prob. 130PCh. 5 - Prob. 131PCh. 5 - Prob. 132PCh. 5 - Prob. 133PCh. 5 - Prob. 134PCh. 5 - Prob. 135PCh. 5 - Prob. 136PCh. 5 - Prob. 137PCh. 5 - Prob. 138PCh. 5 - Prob. 139P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding Suppose you have a macroscopic salt crystal (that is, a crystal that is large enough to be visible with your unaided eye). It is made up of a huge number of unit cells. Is the center of mass of this crystal necessarily at the geometric center of the crystal?arrow_forwardCheck Your Understanding Suppose we included the sun in the system. Approximately where would the center of mass of the Earth-moon-sun system be located? (Feel free to actually calculate it.)arrow_forwardFind the center of mass of a cone of uniform density that has a radius R at the base, height h, and mass M. Let the origin be at the center of the base of the cone and have +z going through the cone vertex.arrow_forward
- (a) What is the mass of a large ship that has a momentum of 1.60109kgm/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship's momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.arrow_forwardTwo particles of masses m1 and m2 , move uniformly in different circles of radii R1 and R2 R2 about origin in the x, y-plane. The x- and y-coordinates of the center of mass and that of particle 1 are given as follows (where length is in meters and tin seconds): x1(t)=4cos(2t) , y1(t)=4sin(2t) and: xCM(t)=4cos(2t) , yCM(t)=3sin(2t) . a. Find the radius of the circle in which particle 1 moves. b. Find the x- and y-coordinates of particle 2 and the radius of the circle this particle moves.arrow_forwardTwo particles of masses m1 and m2 move uniformly in different circles of radii R1 and R1 about the origin in the x, y-plane. The coordinates of the two particles in meters are given as follows ( z=0 for both). Here t is in seconds: x1(t)=4cos(2t) y1(t)=4sin(2t) x2(t)=2cos(3t2) y2(t)=2sin(3t2) a. Find the radii of the circles of motion of both particles. b. Find the x- and y-coordinates of the center of mass. c. Decide if the center of mass moves in a circle by plotting its trajectory.arrow_forward
- Where is the center of mass of a semicircular wire of radius R that is centered on the origin, begins and ends on the x axis, and lies in the x, y plane?arrow_forwardA horizontal cylindrical tank 4.5 m long and 2 m in diameter contains a liquid that reaches 60 cm in height and has a relative density of 0.7. Determine the mass and the vertical component of the center of mass of the contained liquid.arrow_forwardA rod that is .25 m in length has a linear density defined by λ= 3x - 2 where λ is measured in g/cm. What is the center of mass of the rod located?arrow_forward
- a shape is on an x-y axis, beginning at x = 0. The bottom of the shape is 25 cm long and it reaches a height of 20 cm. The shape weights 450 g. The shape has a triangular form, like a wedge. If shape has a uniform density and a uniform width in the z-direction, find the x-component of the center-of-mass.arrow_forwardThis is the next homogeneous figure where each square measures 10 cm by 10 cm. Find the horizontal position of the center of mass in relation to the coordinate system. Give the answer in cm. yarrow_forwardTwo cars collide at an icy intersection and stick together afterward. The first car has a mass of 1500 kg and was approaching at 8.00 m/s due south. The second car has a mass of 800 kg and was approaching at 18.0 m/s due west. a. Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the west) of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look for other simplifying aspects.) magnitude ________ m/s direction _______ degrees counterclockwise from west b. How much kinetic energy (in J) is lost in the collision? (This energy goes into deformation of the cars.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY