Concept explainers
Balance each of the following chemical equations.
a. KO2(s) + H2O(l) ⟶ KOH(aq) + O2(g) + H2O2(aq)
b. Fe2O3(s) + HNO3(aq) ⟶ Fe(NO3)(aq) + H2O(l)
c. NH3(g) + O2(g) ⟶ NO(g) + H2O (g)
d. PCl5(l) + H2O(l) ⟶ H3PO4(aq) + HCl(g)
e. CaO(s) + C(s) ⟶ CaC2(s) + CO2 (g)
f. MoS2(s) + O2(g) ⟶ MoO3(s) + SO2 (g)
g. FeCO3(s) + H2CO3(aq) ⟶ Fe(HCO3)2(aq)
(a)
Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is,
(b)
Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is,
(c)
Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(d)
Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(e)
Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(f)
Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
The balanced chemical equation is
(g)
Interpretation: A balanced form of the given chemical equations is to be stated.
Concept introduction: According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed during a chemical process.
To determine: A balanced form of the given chemical equation.
Explanation of Solution
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
The given reaction is already present in its balanced form.
The balanced chemical equation is
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- In the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward
- 1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward4. Determine the amount in grams of AgCl (s) formed when 2.580 g AgNO3(s) is added to 45.00 mL of a 0.1250 M CrCl3 (aq) (The other product is aqueous chromium (III) nitrate) 5. Determine the amount (in grams) of Cobalt (II) phosphate formed when an aqueous solution of 30.0 ml of 0.450 M Sodium Phosphate is mixed with 20.0 mL of 0.500 M aqueous solution of cobalt (II) nitrate. (The other product is aqueous sodium nitrate)arrow_forward7. Consider the following reaction that describes the dissolution of copper metal in nitric acid: Cu (s) + 4 HNO3 (aq) → Cu(NO3)2 (aq) + 2 H₂O (1) + 2 NO2 (g) How many mL of 3.50 M HNO3 (aq) are required to dissolve 20.00 g Cu?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning