Calculus: Early Transcendentals (2nd Edition)
2nd Edition
ISBN: 9780321947345
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.8, Problem 12E
Finding roots with Newton’s method Use a calculator or program to compute the first 10 iterations of Newton’s method when it is applied to the following functions with the given initial approximation. Make a table similar to that in Example 1.
12. f(x) = ex − 5; x0 = 2
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer, please be quick, all parts, thanks!!
Please show me all steps
Apply Newton’s method to find the root(s) of the function: f(w) = 8w3 – 6w2 – w + 1 = 0
starting with initial point (a) x0 = -0.2. and at what iteration does it give the final answer?Use tolerance of tol = 0.001. (b) x0 = -0.3.
1. (a) _______________ iteration no. = ______(b) ______________ iteration no. = ______
Chapter 4 Solutions
Calculus: Early Transcendentals (2nd Edition)
Ch. 4.1 - Sketch the graph of a function that is continuous...Ch. 4.1 - Sketch the graph of a function that has an...Ch. 4.1 - What is a critical point of a function?Ch. 4.1 - Sketch the graph of a function f that has a local...Ch. 4.1 - Sketch the graph of a function f that has a local...Ch. 4.1 - Absolute maximum/minimum values Use the following...Ch. 4.1 - Absolute maximum/minimum values Use the following...Ch. 4.1 - Absolute maximum/minimum values Use the following...Ch. 4.1 - Absolute maximum/minimum values Use the following...Ch. 4.1 - Local and absolute extreme values Use the...
Ch. 4.1 - Local and absolute extreme values Use the...Ch. 4.1 - Local and absolute extreme values Use the...Ch. 4.1 - Local and absolute extreme values Use the...Ch. 4.1 - Locating critical points a. Find the critical...Ch. 4.1 - Prob. 24ECh. 4.1 - Locating critical points a. Find the critical...Ch. 4.1 - Locating critical points a. Find the critical...Ch. 4.1 - Prob. 27ECh. 4.1 - Prob. 28ECh. 4.1 - Prob. 29ECh. 4.1 - Prob. 30ECh. 4.1 - Prob. 31ECh. 4.1 - Locating critical points a. Find the critical...Ch. 4.1 - Prob. 33ECh. 4.1 - Locating critical points a. Find the critical...Ch. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Prob. 38ECh. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Prob. 40ECh. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.1 - Prob. 46ECh. 4.1 - Prob. 47ECh. 4.1 - Prob. 48ECh. 4.1 - Prob. 49ECh. 4.1 - Prob. 50ECh. 4.1 - Trajectory high point A stone is launched...Ch. 4.1 - Maximizing revenue A sales analyst determines that...Ch. 4.1 - Maximizing profit Suppose a tour guide has a bus...Ch. 4.1 - Maximizing rectangle perimeters All rectangles...Ch. 4.1 - Explain why or why not Determine whether the...Ch. 4.1 - Prob. 56ECh. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Prob. 58ECh. 4.1 - Prob. 59ECh. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Absolute maxima and minima a. Find the critical...Ch. 4.1 - Critical points of functions with unknown...Ch. 4.1 - Prob. 65ECh. 4.1 - Prob. 66ECh. 4.1 - Prob. 67ECh. 4.1 - Critical points and extreme values a. Find the...Ch. 4.1 - Critical points and extreme values a. Find the...Ch. 4.1 - Critical points and extreme values a. Find the...Ch. 4.1 - Prob. 71ECh. 4.1 - Prob. 72ECh. 4.1 - Prob. 73ECh. 4.1 - Absolute value functions Graph the following...Ch. 4.1 - Prob. 75ECh. 4.1 - Minimum surface area box All boxes with a square...Ch. 4.1 - Every second counts You must get from a point P on...Ch. 4.1 - Prob. 78ECh. 4.1 - Values of related functions Suppose f is...Ch. 4.1 - Extreme values of parabolas Consider the function...Ch. 4.1 - Prob. 81ECh. 4.1 - Prob. 82ECh. 4.1 - Proof of the Local Extreme Value Theorem Prove...Ch. 4.2 - Explain how the first derivative of a function...Ch. 4.2 - Explain how to apply the First Derivative Test.Ch. 4.2 - Sketch the graph of a function that has neither a...Ch. 4.2 - Prob. 4ECh. 4.2 - Suppose f exists and is positive on an interval I....Ch. 4.2 - Sketch a function that changes from concave up to...Ch. 4.2 - Prob. 7ECh. 4.2 - Give a function that does not have an inflection...Ch. 4.2 - Is it possible for a function to satisfy f(x) 0,...Ch. 4.2 - Suppose f is continuous on an interval containing...Ch. 4.2 - Sketches from properties Sketch a graph of a...Ch. 4.2 - f(x) 0 on (, 2); f(x) 0 on (2, 5); f(x) 0 on...Ch. 4.2 - Sketches from properties Sketch a graph of a...Ch. 4.2 - Sketches from properties Sketch a graph of a...Ch. 4.2 - Functions from derivatives The following figures...Ch. 4.2 - Functions from derivatives The following figures...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - Prob. 20ECh. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - Prob. 23ECh. 4.2 - Prob. 24ECh. 4.2 - Prob. 25ECh. 4.2 - Prob. 26ECh. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Prob. 31ECh. 4.2 - Prob. 32ECh. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - Increasing and decreasing functions Find the...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - First Derivative Test a. Locale the critical...Ch. 4.2 - Prob. 48ECh. 4.2 - Absolute extreme values Verify that the following...Ch. 4.2 - Absolute extreme values Verify that the following...Ch. 4.2 - Absolute extreme values Verify that the following...Ch. 4.2 - Absolute extreme values Verify that the following...Ch. 4.2 - Prob. 53ECh. 4.2 - Prob. 54ECh. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Prob. 66ECh. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Prob. 68ECh. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Concavity Determine the intervals on which the...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Prob. 74ECh. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Prob. 76ECh. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Prob. 78ECh. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Explain why or why not Determine whether the...Ch. 4.2 - Is it possible? Determine whether the following...Ch. 4.2 - Prob. 87ECh. 4.2 - Prob. 88ECh. 4.2 - Prob. 89ECh. 4.2 - Designer functions Sketch the graph of a function...Ch. 4.2 - Prob. 91ECh. 4.2 - Designer functions Sketch the graph of a function...Ch. 4.2 - Designer functions Sketch the graph of a function...Ch. 4.2 - Graph carefully Graph the function f(x) = 60x5 ...Ch. 4.2 - Interpreting the derivative The graph of f on the...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Second Derivative Test Locate the critical points...Ch. 4.2 - Prob. 99ECh. 4.2 - Concavity of parabolas Consider the general...Ch. 4.2 - Prob. 101ECh. 4.2 - Prob. 102ECh. 4.2 - Population models The population of a species is...Ch. 4.2 - Tangent lines and concavity Give an argument to...Ch. 4.2 - Symmetry of cubics Consider the general cubic...Ch. 4.2 - Properties of cubics Consider the general cubic...Ch. 4.2 - Prob. 107ECh. 4.2 - Even quartics Consider the quartic (fourth-degree)...Ch. 4.2 - General quartic Show that the general quartic...Ch. 4.3 - Why is it important to determine the domain of f...Ch. 4.3 - Prob. 2ECh. 4.3 - Prob. 3ECh. 4.3 - Where are the vertical asymptotes of a rational...Ch. 4.3 - How do you find the absolute maximum and minimum...Ch. 4.3 - Describe the possible end behavior of a...Ch. 4.3 - Shape of the curve Sketch a curve with the...Ch. 4.3 - Shape of the curve Sketch a curve with the...Ch. 4.3 - Graphing polynomials Sketch a graph of the...Ch. 4.3 - Prob. 10ECh. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - Prob. 14ECh. 4.3 - Graphing rational functions Use the guidelines of...Ch. 4.3 - Graphing rational functions Use the guidelines of...Ch. 4.3 - Graphing rational functions Use the guidelines of...Ch. 4.3 - Graphing rational functions Use the guidelines of...Ch. 4.3 - Graphing rational functions Use the guidelines of...Ch. 4.3 - Prob. 20ECh. 4.3 - More graphing Make a complete graph of the...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - More graphing Make a complete graph of the...Ch. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - More graphing Make a complete graph of the...Ch. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - More graphing Make a complete graph of the...Ch. 4.3 - Prob. 32ECh. 4.3 - Prob. 33ECh. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - More graphing Make a complete graph of the...Ch. 4.3 - Graphing with technology Make a complete graph of...Ch. 4.3 - Graphing with technology Make a complete graph of...Ch. 4.3 - Graphing with technology Make a complete graph of...Ch. 4.3 - Graphing with technology Make a complete graph of...Ch. 4.3 - Graphing with technology Make a complete graph of...Ch. 4.3 - Graphing with technology Make a complete graph of...Ch. 4.3 - Explain why or why not Determine whether the...Ch. 4.3 - Functions from derivatives Use the derivative f to...Ch. 4.3 - Functions from derivatives Use the derivative f to...Ch. 4.3 - Functions from derivatives Use the derivative f to...Ch. 4.3 - Functions from derivatives Use the derivative f to...Ch. 4.3 - Functions from graphs Use the graphs of f and f to...Ch. 4.3 - Functions from graphs Use the graphs of f and f to...Ch. 4.3 - Nice cubics and quartics The following third- and...Ch. 4.3 - Prob. 51ECh. 4.3 - Nice cubics and quartics The following third- and...Ch. 4.3 - Prob. 53ECh. 4.3 - Oscillations Consider the function f(x) = cos (ln...Ch. 4.3 - Local max/min of x1/x Use analytical methods to...Ch. 4.3 - Local max/min of xx Use analytical methods to find...Ch. 4.3 - Designer functions Sketch a continuous function f...Ch. 4.3 - Designer functions Sketch a continuous function f...Ch. 4.3 - Designer functions Sketch a continuous function f...Ch. 4.3 - Designer functions Sketch a continuous function f...Ch. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - Prob. 63ECh. 4.3 - Prob. 64ECh. 4.3 - Prob. 65ECh. 4.3 - Prob. 66ECh. 4.3 - Prob. 67ECh. 4.3 - Prob. 68ECh. 4.3 - Prob. 69ECh. 4.3 - Prob. 70ECh. 4.3 - Prob. 72ECh. 4.3 - Derivative information Suppose a continuous...Ch. 4.3 - e e Prove that e e by first finding the maximum...Ch. 4.3 - Special curves The following classical curves have...Ch. 4.3 - Special curves The following classical curves have...Ch. 4.3 - Special curves The following classical curves have...Ch. 4.3 - Prob. 78ECh. 4.3 - Prob. 79ECh. 4.3 - Special curves The following classical curves have...Ch. 4.3 - Special curves The following classical curves have...Ch. 4.3 - Prob. 82ECh. 4.3 - Prob. 83ECh. 4.3 - Prob. 84ECh. 4.3 - Prob. 85ECh. 4.3 - Prob. 86ECh. 4.4 - Fill in the blanks: The goal of an optimization...Ch. 4.4 - Prob. 2ECh. 4.4 - Suppose the objective function is Q = x2y and you...Ch. 4.4 - Suppose you wish to minimize a continuous...Ch. 4.4 - Maximum area rectangles Of all rectangles with a...Ch. 4.4 - Maximum area rectangles Of all rectangles with a...Ch. 4.4 - Minimum perimeter rectangles Of all rectangles of...Ch. 4.4 - Minimum perimeter rectangles Of all rectangles...Ch. 4.4 - Maximum product What two nonnegative real numbers...Ch. 4.4 - Sum of squares What two nonnegative real numbers a...Ch. 4.4 - Minimum sum What two positive real numbers whose...Ch. 4.4 - Maximum product Find numbers x and y satisfying...Ch. 4.4 - Minimum sum Find positive numbers x and y...Ch. 4.4 - Pen problems a. A rectangular pen is built with...Ch. 4.4 - Prob. 15ECh. 4.4 - Maximum-volume box Suppose an airline policy...Ch. 4.4 - Shipping crates A square-based, box-shaped...Ch. 4.4 - Minimum distance Find the point P on the line y =...Ch. 4.4 - Prob. 20ECh. 4.4 - Walking and rowing A boat on the ocean is 4 mi...Ch. 4.4 - Shortest ladder A 10-ft-tall fence runs parallel...Ch. 4.4 - Shortest laddermore realistic An 8-ft-tall fence...Ch. 4.4 - Prob. 24ECh. 4.4 - Rectangles beneath a semicircle A rectangle is...Ch. 4.4 - Circle and square A piece of wire of length 60 is...Ch. 4.4 - Maximum-volume cone A cone is constructed by...Ch. 4.4 - Covering a marble Imagine a flat-bottomed...Ch. 4.4 - Optimal garden A rectangular flower garden with an...Ch. 4.4 - Rectangles beneath a line a. A rectangle is...Ch. 4.4 - Keplers wine barrel Several mathematical stories...Ch. 4.4 - Folded boxes a. Squares with sides of length x are...Ch. 4.4 - Making silos A grain silo consists of a...Ch. 4.4 - Suspension system A load must be suspended 6 m...Ch. 4.4 - Light sources The intensity of a light source at a...Ch. 4.4 - Crease-length problem A rectangular sheet of paper...Ch. 4.4 - Laying cable An island is 3.5 mi from the nearest...Ch. 4.4 - Laying cable again Solve the problem in Exercise...Ch. 4.4 - Sum of isosceles distances a. An isosceles...Ch. 4.4 - Prob. 40ECh. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - Crankshaft A crank of radius r rotates with an...Ch. 4.4 - Metal rain gutters A rain gutter is made from...Ch. 4.4 - Optimal soda can a. Classical problem Find the...Ch. 4.4 - Cylinder and cones (Putnam Exam 1938) Right...Ch. 4.4 - Viewing angles An auditorium with a flat floor has...Ch. 4.4 - Searchlight problemnarrow beam A searchlight is...Ch. 4.4 - Watching a Ferris wheel An observer stands 20 m...Ch. 4.4 - Maximum angle Find the value of x that maximizes ...Ch. 4.4 - Maximum-volume cylinder in a sphere Find the...Ch. 4.4 - Rectangles in triangles Find the dimensions and...Ch. 4.4 - Prob. 53ECh. 4.4 - Maximizing profit Suppose you own a tour bus and...Ch. 4.4 - Cone in a cone A right circular cone is inscribed...Ch. 4.4 - Another pen problem A rancher is building a horse...Ch. 4.4 - Minimum-length roads A house is located at each...Ch. 4.4 - Light transmission A window consists of a...Ch. 4.4 - Slowest shortcut Suppose you are standing in a...Ch. 4.4 - The arbelos An arbelos is the region enclosed by...Ch. 4.4 - Proximity questions a. What point on the line y =...Ch. 4.4 - Turning a corner with a pole a. What is the length...Ch. 4.4 - Travel costs A simple model for travel costs...Ch. 4.4 - Do dogs know calculus? A mathematician stands on a...Ch. 4.4 - Fermats Principle a. Two poles of heights m and n...Ch. 4.4 - Prob. 66ECh. 4.4 - Tree notch (Putnam Exam 1938, rephrased) A notch...Ch. 4.4 - Gliding mammals Many species of small mammals...Ch. 4.4 - A challenging pen problem Two triangular pens are...Ch. 4.4 - Prob. 70ECh. 4.5 - Sketch the graph of a smooth function f and label...Ch. 4.5 - Suppose you find the linear approximation to a...Ch. 4.5 - How is linear approximation used to approximate...Ch. 4.5 - How can linear approximation be used to...Ch. 4.5 - Given a function f that is differentiable on its...Ch. 4.5 - Does the differential dy represent the change in f...Ch. 4.5 - Estimating speed Use the linear approximation...Ch. 4.5 - Prob. 8ECh. 4.5 - Prob. 9ECh. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - Prob. 12ECh. 4.5 - Linear approximation a. Write the equation of the...Ch. 4.5 - Linear approximation a. Write the equation of the...Ch. 4.5 - Linear approximation a. Write the equation of the...Ch. 4.5 - Prob. 16ECh. 4.5 - Linear approximation a. Write the equation of the...Ch. 4.5 - Prob. 18ECh. 4.5 - Linear approximation a. Write the equation of the...Ch. 4.5 - Linear approximation a. Write the equation of the...Ch. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Prob. 22ECh. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Estimations with linear approximation Use linear...Ch. 4.5 - Prob. 30ECh. 4.5 - Linear approximation and concavity Carry out the...Ch. 4.5 - Linear approximation and concavity Carry out the...Ch. 4.5 - Prob. 33ECh. 4.5 - Linear approximation and concavity Carry out the...Ch. 4.5 - Approximating changes 35. Approximate the change...Ch. 4.5 - Approximating changes 36. Approximate the change...Ch. 4.5 - Approximating changes 37. Approximate the change...Ch. 4.5 - Approximating changes 38. Approximate the change...Ch. 4.5 - Approximating changes 39. Approximate the change...Ch. 4.5 - Approximating changes 40. Approximate the change...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Differentials Consider the following functions and...Ch. 4.5 - Explain why or why not Determine whether the...Ch. 4.5 - Linear approximation Estimate f(5.1) given that...Ch. 4.5 - Linear approximation Estimate f(3.85) given that...Ch. 4.5 - Linear approximation a. Write an equation of the...Ch. 4.5 - Linear approximation a. Write an equation of the...Ch. 4.5 - Linear approximation a. Write an equation of the...Ch. 4.5 - Prob. 57ECh. 4.5 - Ideal Gas Law The pressure P, temperature T, and...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - Prob. 61ECh. 4.5 - Errors in approximations Suppose f(x) = 1/(1 + x)...Ch. 4.5 - Prob. 63ECh. 4.6 - Explain Rolles Theorem with a sketch.Ch. 4.6 - Draw the graph of a function for which the...Ch. 4.6 - Explain why Rolles Theorem cannot be applied to...Ch. 4.6 - Explain the Mean Value Theorem with a sketch.Ch. 4.6 - Draw the graph of a function for which the...Ch. 4.6 - At what points c does the conclusion of the Mean...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Rolles Theorem Determine whether Rolles Theorem...Ch. 4.6 - Lapse rates in the atmosphere Concurrent...Ch. 4.6 - Drag racer acceleration The fastest drag racers...Ch. 4.6 - Prob. 17ECh. 4.6 - Prob. 18ECh. 4.6 - Prob. 19ECh. 4.6 - Prob. 20ECh. 4.6 - Prob. 21ECh. 4.6 - Mean Value Theorem a. Determine whether the Mean...Ch. 4.6 - Mean Value Theorem a. Determine whether the Mean...Ch. 4.6 - Prob. 24ECh. 4.6 - Explain why or why not Determine whether the...Ch. 4.6 - Questions about derivatives 26. Without evaluating...Ch. 4.6 - Questions about derivatives 27. Without evaluating...Ch. 4.6 - Questions about derivatives 28. Find all functions...Ch. 4.6 - Mean Value Theorem and graphs By visual...Ch. 4.6 - Mean Value Theorem and graphs Find all points on...Ch. 4.6 - Mean Value Theorem and graphs Find all points on...Ch. 4.6 - Avalanche forecasting Avalanche forecasters...Ch. 4.6 - Mean Value Theorem and the police A state patrol...Ch. 4.6 - Prob. 34ECh. 4.6 - Running pace Explain why if a runner completes a...Ch. 4.6 - Mean Value Theorem for linear functions Interpret...Ch. 4.6 - Mean Value Theorem for quadratic functions...Ch. 4.6 - Means a. Show that the point c guaranteed to exist...Ch. 4.6 - Equal derivatives Verify that the functions f(x) =...Ch. 4.6 - Prob. 40ECh. 4.6 - 100-m speed The Jamaican sprinter Usain Bolt set a...Ch. 4.6 - Prob. 42ECh. 4.6 - Generalized Mean Value Theorem Suppose the...Ch. 4.7 - Explain with examples what is meant by the...Ch. 4.7 - Why are special methods, such as lHpitals Rule,...Ch. 4.7 - Explain the steps used to apply lHpitals Rule to a...Ch. 4.7 - Prob. 4ECh. 4.7 - Explain how to convert a limit of the form 0 to...Ch. 4.7 - Give an example of a limit of the form / as x 0.Ch. 4.7 - Explain why the form 1 is indeterminate and cannot...Ch. 4.7 - Give the two-step method for attacking an...Ch. 4.7 - In terms of limits, what does it mean for f to...Ch. 4.7 - In terms of limits, what does it mean for the...Ch. 4.7 - Rank the functions x3, ln x, xx, and 2x in order...Ch. 4.7 - Rank the functions x100, ln x10, xx, and 10x in...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - Prob. 19ECh. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits using...Ch. 4.7 - 0/0 form Evaluate the following limits. 23....Ch. 4.7 - 0/0 form Evaluate the following limits. 24....Ch. 4.7 - 0/0 form Evaluate the following limits. 25....Ch. 4.7 - 0/0 form Evaluate the following limits. 26....Ch. 4.7 - 0/0 form Evaluate the following limits. 27....Ch. 4.7 - 0/0 form Evaluate the following limits. 28....Ch. 4.7 - Prob. 29ECh. 4.7 - 0/0 form Evaluate the following limits. 30....Ch. 4.7 - 0/0 form Evaluate the following limits. 31....Ch. 4.7 - 0/0 form Evaluate the following limits. 32....Ch. 4.7 - 0/0 form Evaluate the following limits. 33....Ch. 4.7 - 0/0 form Evaluate the following limits. 34....Ch. 4.7 - 0/0 form Evaluate the following limits. 35....Ch. 4.7 - 0/0 form Evaluate the following limits. 36....Ch. 4.7 - Prob. 37ECh. 4.7 - / form Evaluate the following limits. 38....Ch. 4.7 - / form Evaluate the following limits. 39....Ch. 4.7 - Prob. 40ECh. 4.7 - / form Evaluate the following limits. 41....Ch. 4.7 - / form Evaluate the following limits. 42....Ch. 4.7 - Prob. 43ECh. 4.7 - Prob. 44ECh. 4.7 - 0 form Evaluate the following limits. 45....Ch. 4.7 - 0 form Evaluate the following limits. 46....Ch. 4.7 - 0 form Evaluate the following limits. 47....Ch. 4.7 - 0 form Evaluate the following limits. 48....Ch. 4.7 - 0 form Evaluate the following limits. 49....Ch. 4.7 - 0 form Evaluate the following limits. 50....Ch. 4.7 - form Evaluate the following limits. 51....Ch. 4.7 - Prob. 52ECh. 4.7 - form Evaluate the following limits. 53....Ch. 4.7 - Prob. 54ECh. 4.7 - Prob. 55ECh. 4.7 - Prob. 56ECh. 4.7 - Prob. 57ECh. 4.7 - 1, 00, 0 forms Evaluate the following limits or...Ch. 4.7 - 1, 00, 0 forms Evaluate the following limits or...Ch. 4.7 - Prob. 60ECh. 4.7 - Prob. 61ECh. 4.7 - Prob. 62ECh. 4.7 - 1, 00, 0 forms Evaluate the following limits or...Ch. 4.7 - 1, 00, 0 forms Evaluate the following limits or...Ch. 4.7 - Prob. 65ECh. 4.7 - 1, 00, 0 forms Evaluate the following limits or...Ch. 4.7 - Prob. 67ECh. 4.7 - Prob. 68ECh. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Prob. 76ECh. 4.7 - Prob. 77ECh. 4.7 - Prob. 78ECh. 4.7 - Comparing growth rates Use limit methods to...Ch. 4.7 - Prob. 80ECh. 4.7 - Explain why or why not Determine whether the...Ch. 4.7 - Two methods Evaluate the following limits in two...Ch. 4.7 - Two methods Evaluate the following limits in two...Ch. 4.7 - Prob. 84ECh. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Miscellaneous limits by any means Use analytical...Ch. 4.7 - Limits with parameters Evaluate the following...Ch. 4.7 - Limits with parameters Evaluate the following...Ch. 4.7 - Limits with parameters Evaluate the following...Ch. 4.7 - Limits with parameters Evaluate the following...Ch. 4.7 - An optics limit The theory of interference of...Ch. 4.7 - Compound interest Suppose you make a deposit of P...Ch. 4.7 - Algorithm complexity The complexity of a computer...Ch. 4.7 - LHpital loops Consider the limit limx0ax+bcx+d,...Ch. 4.7 - General result Let a and b be positive real...Ch. 4.7 - Exponential functions and powers Show that any...Ch. 4.7 - Exponentials with different bases Show that f(x) =...Ch. 4.7 - Logs with different bases Show that f(x) = loga x...Ch. 4.7 - Factorial growth rate The factorial function is...Ch. 4.7 - A geometric limit Let f() be the area of the...Ch. 4.7 - Exponentials vs. super exponentials Show that xx...Ch. 4.7 - Exponential growth rates a. For what values of b ...Ch. 4.8 - Give a geometric explanation of Newtons method.Ch. 4.8 - Prob. 2ECh. 4.8 - How do you decide when to terminate Newtons...Ch. 4.8 - Give the formula for Newtons method for the...Ch. 4.8 - Formulating Newtons method Write the formula for...Ch. 4.8 - Formulating Newtons method Write the formula for...Ch. 4.8 - Formulating Newtons method Write the formula for...Ch. 4.8 - Formulating Newtons method Write the formula for...Ch. 4.8 - Finding roots with Newtons method Use a calculator...Ch. 4.8 - Finding roots with Newtons method Use a calculator...Ch. 4.8 - Finding roots with Newtons method Use a calculator...Ch. 4.8 - Finding roots with Newtons method Use a calculator...Ch. 4.8 - Finding roots with Newtons method Use a calculator...Ch. 4.8 - Finding roots with Newtons method Use a calculator...Ch. 4.8 - Finding intersection points Use Newtons method to...Ch. 4.8 - Prob. 16ECh. 4.8 - Finding intersection points Use Newtons method to...Ch. 4.8 - Prob. 18ECh. 4.8 - Finding intersection points Use Newtons method to...Ch. 4.8 - Prob. 20ECh. 4.8 - Prob. 21ECh. 4.8 - Newtons method and curve sketching Use Newtons...Ch. 4.8 - Newtons method and curve sketching Use Newtons...Ch. 4.8 - Prob. 24ECh. 4.8 - Prob. 25ECh. 4.8 - Slow convergence 26. Consider the function f(x) =...Ch. 4.8 - Prob. 27ECh. 4.8 - Fixed points An important question about many...Ch. 4.8 - Fixed points An important question about many...Ch. 4.8 - Fixed points An important question about many...Ch. 4.8 - Fixed points An important question about many...Ch. 4.8 - More root finding Find all the roots of the...Ch. 4.8 - More root finding Find all the roots of the...Ch. 4.8 - More root finding Find all the roots of the...Ch. 4.8 - More root finding Find all the roots of the...Ch. 4.8 - More root finding Find all the roots of the...Ch. 4.8 - More root finding Find all the roots of the...Ch. 4.8 - More root finding Find all the roots of the...Ch. 4.8 - Residuals and errors Approximate the root of f(x)...Ch. 4.8 - Approximating square roots Let a 0 be given and...Ch. 4.8 - Prob. 43ECh. 4.8 - Prob. 44ECh. 4.8 - Applications 45. A damped oscillator The...Ch. 4.8 - The sinc function The sinc function, sinc(x)=sinxx...Ch. 4.8 - Prob. 47ECh. 4.8 - Prob. 48ECh. 4.8 - Prob. 49ECh. 4.9 - Fill in the blanks with either of the words the...Ch. 4.9 - Describe the set of antiderivatives of f(x) = 0.Ch. 4.9 - Describe the set of antiderivatives of f(x) = 1.Ch. 4.9 - Why do two different antiderivatives of a function...Ch. 4.9 - Give the antiderivatives of xp. For what values of...Ch. 4.9 - Prob. 6ECh. 4.9 - Give the antiderivatives of 1/x.Ch. 4.9 - Prob. 8ECh. 4.9 - If F(x) = x2 3x + C and F(1) = 4, what is the...Ch. 4.9 - For a given function f, explain the steps used to...Ch. 4.9 - Finding antiderivatives Find all the...Ch. 4.9 - Finding antiderivatives Find all the...Ch. 4.9 - Prob. 13ECh. 4.9 - Prob. 14ECh. 4.9 - Prob. 15ECh. 4.9 - Prob. 16ECh. 4.9 - Finding antiderivatives Find all the...Ch. 4.9 - Finding antiderivatives Find all the...Ch. 4.9 - Finding antiderivatives Find all the...Ch. 4.9 - Finding antiderivatives Find all the...Ch. 4.9 - Prob. 21ECh. 4.9 - Prob. 22ECh. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Indefinite integrals Determine the following...Ch. 4.9 - Prob. 36ECh. 4.9 - Prob. 37ECh. 4.9 - Prob. 38ECh. 4.9 - Prob. 39ECh. 4.9 - Prob. 40ECh. 4.9 - Indefinite integrals involving trigonometric...Ch. 4.9 - Prob. 42ECh. 4.9 - Indefinite integrals involving trigonometric...Ch. 4.9 - Prob. 44ECh. 4.9 - Prob. 45ECh. 4.9 - Indefinite integrals involving trigonometric...Ch. 4.9 - Other indefinite integrate Determine the following...Ch. 4.9 - Prob. 48ECh. 4.9 - Other indefinite integrate Determine the following...Ch. 4.9 - Prob. 50ECh. 4.9 - Prob. 51ECh. 4.9 - Prob. 52ECh. 4.9 - Prob. 53ECh. 4.9 - Prob. 54ECh. 4.9 - Other indefinite integrate Determine the following...Ch. 4.9 - Prob. 56ECh. 4.9 - Other indefinite integrate Determine the following...Ch. 4.9 - Other indefinite integrate Determine the following...Ch. 4.9 - Prob. 59ECh. 4.9 - Prob. 60ECh. 4.9 - Prob. 61ECh. 4.9 - Prob. 62ECh. 4.9 - Prob. 63ECh. 4.9 - Particular antiderivatives For the following...Ch. 4.9 - Prob. 65ECh. 4.9 - Particular antiderivatives For the following...Ch. 4.9 - Solving initial value problems Find the solution...Ch. 4.9 - Solving initial value problems Find the solution...Ch. 4.9 - Solving initial value problems Find the solution...Ch. 4.9 - Prob. 70ECh. 4.9 - Prob. 71ECh. 4.9 - Prob. 72ECh. 4.9 - Prob. 73ECh. 4.9 - Prob. 74ECh. 4.9 - Prob. 75ECh. 4.9 - Prob. 76ECh. 4.9 - Graphing general solutions Graph several functions...Ch. 4.9 - Prob. 78ECh. 4.9 - Prob. 79ECh. 4.9 - Prob. 80ECh. 4.9 - Prob. 81ECh. 4.9 - Prob. 82ECh. 4.9 - Velocity to position Given the following velocity...Ch. 4.9 - Prob. 84ECh. 4.9 - Prob. 85ECh. 4.9 - Velocity to position Given the following velocity...Ch. 4.9 - Velocity to position Given the following velocity...Ch. 4.9 - Prob. 88ECh. 4.9 - Acceleration to position Given the following...Ch. 4.9 - Acceleration to position Given the following...Ch. 4.9 - Acceleration to position Given the following...Ch. 4.9 - Acceleration to position Given the following...Ch. 4.9 - Prob. 93ECh. 4.9 - Prob. 94ECh. 4.9 - Races The velocity function and initial position...Ch. 4.9 - Prob. 96ECh. 4.9 - Prob. 97ECh. 4.9 - Motion with gravity Consider the following...Ch. 4.9 - Prob. 99ECh. 4.9 - Motion with gravity Consider the following...Ch. 4.9 - Explain why or why not Determine whether the...Ch. 4.9 - Miscellaneous indefinite integrals Determine the...Ch. 4.9 - Prob. 103ECh. 4.9 - Prob. 104ECh. 4.9 - Prob. 105ECh. 4.9 - Prob. 106ECh. 4.9 - Miscellaneous indefinite integrals Determine the...Ch. 4.9 - Miscellaneous indefinite integrals Determine the...Ch. 4.9 - Prob. 109ECh. 4.9 - Prob. 110ECh. 4.9 - Functions from higher derivatives Find the...Ch. 4.9 - Functions from higher derivatives Find the...Ch. 4.9 - Prob. 113ECh. 4.9 - Prob. 114ECh. 4.9 - How rate A large tank is filled with water when an...Ch. 4.9 - Prob. 116ECh. 4.9 - Prob. 117ECh. 4.9 - Verifying indefinite integrals Verify the...Ch. 4.9 - Prob. 119ECh. 4.9 - Prob. 120ECh. 4.9 - Prob. 121ECh. 4 - Explain why or why not Determine whether the...Ch. 4 - Locating extrema Consider the graph of a function...Ch. 4 - Designer functions Sketch the graph of a function...Ch. 4 - Designer functions Sketch the graph of a function...Ch. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Absolute values Consider the function f(x) = |x ...Ch. 4 - Inflection points Does f(x) = 2x5 10x4 + 20x3 + x...Ch. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Curve sketching Use the guidelines given in...Ch. 4 - Prob. 18RECh. 4 - Prob. 19RECh. 4 - Prob. 20RECh. 4 - Optimization A right triangle has legs of length h...Ch. 4 - T 22. Rectangles beneath a curve A rectangle is...Ch. 4 - Maximum printable area A rectangular page in a...Ch. 4 - Nearest point What point on the graph of...Ch. 4 - Maximum area A line segment of length 10 joins the...Ch. 4 - Minimum painting surface A metal cistern in the...Ch. 4 - Linear approximation a. Find the linear...Ch. 4 - Linear approximation a. Find the linear...Ch. 4 - Estimations with linear approximation Use linear...Ch. 4 - Estimations with linear approximation Use linear...Ch. 4 - Change in elevation The elevation h (in feet above...Ch. 4 - Change in energy The energy E (in joules) released...Ch. 4 - Mean Value Theorem The population of a culture of...Ch. 4 - Growth rate of bamboo Bamboo belongs to the grass...Ch. 4 - Newtons method Use Newtons method to approximate...Ch. 4 - Prob. 36RECh. 4 - Newtons method Use Newtons method to approximate...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Prob. 46RECh. 4 - Prob. 47RECh. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Limits Evaluate the following limits. Use lHpitals...Ch. 4 - Prob. 51RECh. 4 - Prob. 52RECh. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - Prob. 56RECh. 4 - Prob. 57RECh. 4 - Prob. 58RECh. 4 - Prob. 59RECh. 4 - Comparing growth rates Determine which of the two...Ch. 4 - Prob. 61RECh. 4 - Prob. 62RECh. 4 - Comparing growth rates Determine which of the two...Ch. 4 - Comparing growth rates Determine which of the two...Ch. 4 - Prob. 65RECh. 4 - Comparing growth rates Determine which of the two...Ch. 4 - Comparing growth rates Determine which of the two...Ch. 4 - Indefinite integrals Determine the following...Ch. 4 - Indefinite integrals Determine the following...Ch. 4 - Prob. 70RECh. 4 - Indefinite integrals Determine the following...Ch. 4 - Indefinite integrals Determine the following...Ch. 4 - Prob. 73RECh. 4 - Indefinite integrals Determine the following...Ch. 4 - Prob. 75RECh. 4 - Prob. 76RECh. 4 - Prob. 77RECh. 4 - Indefinite integrals Determine the following...Ch. 4 - Prob. 79RECh. 4 - Prob. 80RECh. 4 - Prob. 81RECh. 4 - Prob. 82RECh. 4 - Prob. 83RECh. 4 - Prob. 84RECh. 4 - Prob. 85RECh. 4 - Prob. 86RECh. 4 - Prob. 87RECh. 4 - Logs of logs Compare the growth rates of ln x, ln...Ch. 4 - Prob. 89RECh. 4 - Prob. 90RECh. 4 - Prob. 91RECh. 4 - Prob. 92RECh. 4 - Prob. 93RECh. 4 - Prob. 94RECh. 4 - Limits for e Consider the function g(x) = (1 +...Ch. 4 - A family of super-exponential functions Let f(x) =...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Define Newton’s Law of Cooling. Then name at least three real-world situations where Newton’s Law of Cooling would be applied.arrow_forwardIf you travel 300 miles on the first day and then drive v miles per hour for t hours on the second day, then the total distance traveled over the teo-day period is given by d=300+vt miles. Use a formula to express v as a function of d and t for this two-day event.arrow_forwardA bottle of soda with a temperature of 71 Fahrenheit was taken off a shelf and placed ina refrigerator with an internal temperature of 35 .After ten minutes, the internal temperature of thesoda was 63F . Use Newton’s Law of cooling towrite a formula that models this situation. To thenearest degree, what will the temperature of thesoda be after one hour?arrow_forward
- Frictional Force The frictional force F between the tires and the road required to keep a car on a curved section of a highway is directly proportional to the square of the speed s of the car. If the speed of the car is doubled, the force will change by what factor?arrow_forwardA forest fire leaves behind an area of grass burned in an expanding circular pattern. If the radius of the circle of burning grass is increasing with time according to the formula r(t)=2t+1 , express the area burned as a function of time, t (minutes).arrow_forwardm Miles per Gallon The cost of operating a car depends on the gas mileage in that your car gets, the cost x per gallon of gasoline, and the distance d that you drive. a. How much does it cost to drive 100 miles if your car gets 25 miles per gallon and gasoline costs 349 cents per gallon? b. Find a formula that gives the cost C as a function of m, g, and d be sure to state the units of each variable. c. Use functional notation to show the cost of driving a car that gets 28 miles per gallon a distance of 138 miles if gasoline costs 3.69 per gallon Use the formula from part b to calculate the cost.arrow_forward
- Use Newton's method to approximate the value of V7 by following the steps below: (a) Since Newton's method can only be used to find a root of a function, V7 has to be made into a root of a function. Find a function f(x) such that f(V7) = 0. (b) Perform Newton's method to find an approximate value for V7, accurate to the 4th place after the decimal point.arrow_forwardHi could you solve part B by using Newton’s Divided-Difference Formulaarrow_forwardNewton method √11arrow_forward
- using the newton - rophson method with three iterations Find a root of the function f(x) = x3-5x2+13x-5.1 with the initial condition x (zero) = 3.5.arrow_forwardnewton's method Use the function f(x) = cos²x - sin x for this problem. a. find the approximation of x₂ if xo = 4. b. find the approximation of x₂ if xo = 5. c. find the approximation of x₂ if xo = 6.arrow_forwardUse Newton's method to approximate a root of the equation x³ + x + 3 = 0 as follows. Let 1 = -1 be the initial approximation. The second approximation ₂ 5 4 and the third approximation x3 is (Although these are approximations of the root, enter exact expressions for each approximation.) Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY