Investigation Consider the function f ( x ) = 2 x n x 4 + 1 for nonnegative integer values of n . (a) Discuss the relationship between the value of n and the symmetry of the graph. (b) For which values of n will the x-axis be the horizontal asymptote? (c) For which value of n will y = 2 be the horizontal asymptote? (d) What is the asymptote of the graph when y = 2 (e) Use a graphing utility to graph f for the indicated values of n in the table. Use the graph to determine the number of extrema M and the number of inflection points N of the graph. n 0 1 2 3 4 5 M N
Investigation Consider the function f ( x ) = 2 x n x 4 + 1 for nonnegative integer values of n . (a) Discuss the relationship between the value of n and the symmetry of the graph. (b) For which values of n will the x-axis be the horizontal asymptote? (c) For which value of n will y = 2 be the horizontal asymptote? (d) What is the asymptote of the graph when y = 2 (e) Use a graphing utility to graph f for the indicated values of n in the table. Use the graph to determine the number of extrema M and the number of inflection points N of the graph. n 0 1 2 3 4 5 M N
Solution Summary: The author explains how to determine the relation between the symmetry of the function f(x) and the value of n.
(a) Discuss the relationship between the value of n and the symmetry of the graph.
(b) For which values of n will the x-axis be the horizontal asymptote?
(c) For which value of n will
y
=
2
be the horizontal asymptote?
(d) What is the asymptote of the graph when
y
=
2
(e) Use a graphing utility to graph f for the indicated values of n in the table. Use the graph to determine the number of extrema M and the number of inflection points N of the graph.
T
1
7. Fill in the blanks to write the calculus problem that would result in the following integral (do
not evaluate the interval). Draw a graph representing the problem.
So
π/2
2 2πxcosx dx
Find the volume of the solid obtained when the region under the curve
on the interval
is rotated about the
axis.
38,189
5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the
solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x|
≤
and the curve y
y =
about the line
x =
=플
2
80
F3
a
FEB
9
2
7
0
MacBook Air
3
2
stv
DG
Find f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x.
h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1
-
-
-
f(x) = ☐
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.