The correct statement from the given options for the condition when the graph of y = sin x has a relative minimum at x . (a). y = csc x is undefined. (b). y = sec x is undefined. (c). The graph of y = sec x has a relative maximum at x . (d). The graph of y = csc x has a relative minimum at x . (e). The graph of y = sec x has a vertical asymptote. (f). The graph of y = csc x has a vertical asymptote. (g). The graph of y = csc x has a relative maximum at x . (h). The graph of y = sec x has a relative minimum at x .
The correct statement from the given options for the condition when the graph of y = sin x has a relative minimum at x . (a). y = csc x is undefined. (b). y = sec x is undefined. (c). The graph of y = sec x has a relative maximum at x . (d). The graph of y = csc x has a relative minimum at x . (e). The graph of y = sec x has a vertical asymptote. (f). The graph of y = csc x has a vertical asymptote. (g). The graph of y = csc x has a relative maximum at x . (h). The graph of y = sec x has a relative minimum at x .
Solution Summary: The author explains that the graph of y=mathrmcscx suggests that at the values where the function
Formula Formula A function f(x) attains a local maximum at x=a , if there exists a neighborhood (a−δ,a+δ) of a such that, f(x)<f(a), ∀ x∈(a−δ,a+δ),x≠a f(x)−f(a)<0, ∀ x∈(a−δ,a+δ),x≠a In such case, f(a) attains a local maximum value f(x) at x=a .
Chapter 4.6, Problem 14PE
To determine
The correct statement from the given options for the condition when the graph of y=sinx has a relative minimum at x .
(a). y=cscx is undefined.
(b). y=secx is undefined.
(c). The graph of y=secx has a relative maximum at x .
(d). The graph of y=cscx has a relative minimum at x .
(e). The graph of y=secx has a vertical asymptote.
(f). The graph of y=cscx has a vertical asymptote.
(g). The graph of y=cscx has a relative maximum at x .
(h). The graph of y=secx has a relative minimum at x .
5:38
Video Message
instructor
Submit Question
|||
D
8:38
***
TEMU
TEMU
-3
-2
7
B
2
1
& 5G. 61%
1
2
-1
Based on the graph above, determine
the amplitude, period, midline, and
equation of the function. Use f(x) as
the output.
Amplitude:
2
Period: 2
Midline:
2
☑ syntax
error: this is not an equation.
Function:
f(x) = −2 cos(πx + 2.5π) +2×
Question Help: Worked Example 1 ☑
Message instructor
Submit Question
|||
<
8:39
***
TEMU
5G 60%
A ferris wheel is 28 meters in diameter
and boarded from a platform that is 2
meters above the ground. The six
o'clock position on the ferris wheel is
level with the loading platform. The
wheel completes 1 full revolution in 4
minutes. The function h = f(t) gives
your height in meters above the
ground t minutes after the wheel
begins to turn.
What is the amplitude?
14
meters
What is the equation of the Midline?
y = 16
What is the period?
4
meters
minutes
The equation that models the height
of the ferris wheel after t minutes is:
f(t):
=
ƒ (3) = ·−14(0) + 16
syntax error: you gave an equation,
not an expression. syntax error. Check
your variables - you might be using an
incorrect one.
How high are you off of the ground
after 3 minutes? Round your answe
the nearest meter.
|||
<
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.