Exercises 102-104 will help you prepare for the material covered in the next section. a. Graph y = cos x for 0 ≤ x ≤ π . b. Based on your graph in part (a), does y = cos x have an inverse function if the domain is restricted to [ 0 , π ]? Explain your answer c. Determine the angle in the interval [ 0 , π ] whose cosine is − 3 2 . Identify this information as a point on your graph in part (a).
Exercises 102-104 will help you prepare for the material covered in the next section. a. Graph y = cos x for 0 ≤ x ≤ π . b. Based on your graph in part (a), does y = cos x have an inverse function if the domain is restricted to [ 0 , π ]? Explain your answer c. Determine the angle in the interval [ 0 , π ] whose cosine is − 3 2 . Identify this information as a point on your graph in part (a).
Solution Summary: The author explains that the function y=mathrmcosx has an inverse function if the domain is restricted to
Good Day,
Would appreciate any assistance with this query.
Regards,
This question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one.
A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The
wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture.
A
B
A
B
at some instant, the piston will be tangent to the circle
(a) Express the x and y coordinates of point A as functions of t:
x= 2 cos(3πt)
and y= 2 sin(3t)
(b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds:
-cot(3πt)
sin(3лt)
(c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +411-
4
-2 sin (3лt)
(d)…
5. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.AE.003.
y
y= ex²
0
Video Example
x
EXAMPLE 3
(a) Use the Midpoint Rule with n = 10 to approximate the integral
कर
L'ex²
dx.
(b) Give an upper bound for the error involved in this approximation.
SOLUTION
8+2
1
L'ex² d
(a) Since a = 0, b = 1, and n = 10, the Midpoint Rule gives the following. (Round your answer to six decimal places.)
dx Ax[f(0.05) + f(0.15) + ... + f(0.85) + f(0.95)]
0.1 [0.0025 +0.0225
+
+ e0.0625 + 0.1225
e0.3025 + e0.4225
+ e0.2025
+
+ e0.5625 €0.7225 +0.9025]
The figure illustrates this approximation.
(b) Since f(x) = ex², we have f'(x)
=
0 ≤ f'(x) =
< 6e.
ASK YOUR TEACHER
and f'(x) =
Also, since 0 ≤ x ≤ 1 we have x² ≤
and so
Taking K = 6e, a = 0, b = 1, and n = 10 in the error estimate, we see that an upper bound for the error is as follows. (Round your final
answer to five decimal places.)
6e(1)3
e
24(
=
≈
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.