Estimating speed Use the linear approximation given in Example 1 to answer the following questions.
7. If you travel one mile in 59 seconds, what is your approximate average speed? What is your exact speed?
EXAMPLE 1 Useful driving math Suppose you are driving along a highway at a nearly constant speed and you record the number of seconds it takes to travel between two consecutive mile markers. If it takes 60 seconds to travel one mile, then your average speed is 1 mi/60 s or 60 mi/hr. Now suppose that you travel one mile in 60 + x seconds; for example, if it lakes 62 seconds, then x = 2, and if it takes 57 seconds, then x = −3. In this case, your average speed over one mile is 1 mi/(60 + x) s. Because there are 3600 s in 1 hr, the function
gives your average speed in mi/hr if you travel one mile in x seconds more or less than 60 seconds. For example, if you travel one mile in 62 seconds, then x = 2 and your average speed is s(2) ≈ 58.06 mi/hr. If you travel one mile in 57 seconds, then x = −3 and your average speed is s(−3) ≈ 63.16 mi/hr. Because you don’t want to use a calculator while driving, you need an easy approximation to this function. Use linear approximation to derive such a formula.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
CODE/CALC ET 3-HOLE
Additional Engineering Textbook Solutions
Algebra and Trigonometry (6th Edition)
Elementary Statistics (13th Edition)
Pre-Algebra Student Edition
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics
Basic Business Statistics, Student Value Edition
- Write the given third order linear equation as an equivalent system of first order equations with initial values. Use Y1 = Y, Y2 = y', and y3 = y". - - √ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t² \y(3) = 1, y′(3) = −2, y″(3) = −3 (8) - (888) - with initial values Y = If you don't get this in 3 tries, you can get a hint.arrow_forwardQuestion 2 1 pts Let A be the value of the triple integral SSS. (x³ y² z) dV where D is the region D bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0. Then the value of sin(3A) is -0.003 0.496 -0.408 -0.420 0.384 -0.162 0.367 0.364arrow_forwardQuestion 1 Let A be the value of the triple integral SSS₂ (x + 22) = 1 pts dV where D is the region in 0, y = 2, y = 2x, z = 0, and the first octant bounded by the planes x z = 1 + 2x + y. Then the value of cos(A/4) is -0.411 0.709 0.067 -0.841 0.578 -0.913 -0.908 -0.120arrow_forward
- In the xy-plane, the graphs of the linear function and the exponential function E both pass through the points (0,2) and (1,6) The function f is given by f(x) = L(x) - E(x). What is the maximum value of f? A 0.007 B 0.172 C 0.540 D 1.002arrow_forwardn 3 5 ст 7 ап 85 95 105 The table gives values of an arithmetic sequence an for selected values of n. Which of the following linear functions is αρ constructed from the initial value an (with n = 0) and common difference of the sequence? A f(x) = 70+5x B f(x) = 70+10x C f(x) = 75+5x D f(x) = 75+10xarrow_forward3. Submit answer Practice similar Calculate the integral approximation Se for So dz. L-de 4 1. Submit answer Answers Answer 立 O Next item MOVIE BUZZ Score PixelPointTV - Movie Buz Watch the latest movie trailers, mo T Thearrow_forward
- I need help with this problem because I'm having issue with this problem.arrow_forwardFind a parametric representation for the surface. The part of the sphere x2 + y2 + z2 = 16 that lies above the cone z = (x2 + y2)1/2. Let x, y, and z be in terms of u and or v.arrow_forwardThis is a question I posted previously. I am looking for a convincing mathematical solution, not an explanation and definitions. Do not send me previous solutions, as it is a mistake. Please.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning