Concept explainers
(a)
The atomic number and mass number of the nucleus UX1.
(a)
Answer to Problem 45SP
Solution:
Explanation of Solution
Given data:
By natural radioactivity,
The heavy nucleus UX1 emits a beta particle to form the resultant nucleusUX2.
Formula used:
The conservation of mass is applied in the reaction
Here,
The reaction, when an alpha particle is emitted from a nucleus, is written as
Here,
Explanation:
Consider the given nucleus
Compare the nucleus
Write the standard expression for the emission of an alpha particle from a nucleus as
Here,
The parent nucleus for the reaction is
Apply the conservation of mass by equating the atomic masses on both sides of the chemical equation (1):
Apply the conservation of mass by equating the atomic numbers on both sides of the chemical equation (1):
The value of
Rewrite equation (1) as
Substitute
Conclusion:
The complete equation, after filling the values of
(b)
The atomic number and mass number of the nucleus
(b)
Answer to Problem 45SP
Solution:
Explanation of Solution
Given data:
By natural radioactivity,
The heavy nucleus
Formula used:
The conservation of mass is applied in the reaction
Here,
The emission of a
Here,
Explanation:
Write a standard expression for the emission of abeta particle from the nucleus
Here,
From part (a), the parent nucleus for this reaction is
Apply the conservation of mass by equating the atomic masses on both sides of chemical equation (2):
Apply the conservation of mass by equating the atomic numbers on both sides of chemical equation (2):
The value of
Rewrite equation (2) as
Substitute
Conclusion:
The complete equation, after filling the values of
Want to see more full solutions like this?
Chapter 45 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
- Suppose you have a pure radioactive material with a half-life of T1/2. You begin with N0 undecayed nuclei of the material at t = 0. At t=12T1/2, how many of the nuclei have decayed? (a) 14N0 (b) 12N0(C) 34N0 (d) 0.707N0 (e) 0.293N0arrow_forward(a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardIn the following eight problems, write the complete decay equation for the given nuclide in the complete XZAN notation. Refer to the periodic table for values of Z. decay of 226Ra, another isotope in the decay series of 238U, FIrst recognized as a new element by the Curies. Poses special problems because its daughter is a radioactive noble gas. In the following four problems, identity the parent nuclide and write the complete decay equation in the XZAN notation. Refer to the periodic table for values of Z.arrow_forward
- (a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forward(a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forwardThe ceramic glaze on a red-orange “Fiestaware” plate is U2O3and contains 50.0 grams of 238U, but very little 235U. (a) What is the activity of the plate? (b) Calculate the total energy that will be released by the 238U decay, (c) If energy is worth 12.0 cents per kWh , what is the monetary value of the energy emitted? (These brightly- colored ceramic plates went out of production some 30 years ago, but are still available as collectibles.)arrow_forward
- No stable nuclides exist that have Z greater than ___. (10.3)arrow_forward(a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardThe naturally occurring radioactive isotope 232Th does not make good fission fuel, because it has an even number of neurons; however, it can be bred into a suitable fuel (much as 238U is bred into 239P). (a) What are Z and N for 232Th? (b) Write the reaction equation for neutron captured by 232Th and identify the nuclide AX produced in n+232ThAX+. (c) The product nucleus β decays, as does its daughter. Write me decay equations for each, and identify the final nucleus. (d) Conform that the final nucleus has an odd number of neutrons, making it a better fission fuel. (e) Look up the halflife of the final nucleus to see if it lives long enough to be a useful fuel.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College