
UD CALC (241 ONLY) W/1 TERM ACCESS >IB
8th Edition
ISBN: 9781337051545
Author: Stewart
Publisher: CENGAGE C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.5, Problem 42E
To determine
To evaluate:
The given definite integral
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Evaluate the definite integral using the given integration limits and the limits obtained by trigonometric substitution.
14
x²
dx
249
(a) the given integration limits
(b) the limits obtained by trigonometric substitution
Assignment #1
Q1: Test the following series for convergence. Specify the test you use:
1
n+5
(-1)n
a) Σn=o
√n²+1
b) Σn=1 n√n+3
c) Σn=1 (2n+1)3
3n
1
d) Σn=1 3n-1
e) Σn=1
4+4n
answer problem 1a, 1b, 1c, 1d, and 1e and show work/ explain how you got the answer
Chapter 4 Solutions
UD CALC (241 ONLY) W/1 TERM ACCESS >IB
Ch. 4.1 - Prob. 1ECh. 4.1 - a Use six rectangles to find estimates of each...Ch. 4.1 - a Estimate the area under the graph of f(x)=1/x...Ch. 4.1 - Prob. 4ECh. 4.1 - Prob. 5ECh. 4.1 - Prob. 6ECh. 4.1 - Prob. 7ECh. 4.1 - Evaluate the upper and lower sums for...Ch. 4.1 - With a programmable calculator or a computer, it...Ch. 4.1 - Prob. 10E
Ch. 4.1 - Some computer algebra systems have commands that...Ch. 4.1 - Prob. 12ECh. 4.1 - The speed of a runner increased steadily during...Ch. 4.1 - The table shows speedometer readings at 10-second...Ch. 4.1 - Prob. 15ECh. 4.1 - Prob. 16ECh. 4.1 - The velocity graph of a braking car is shown. Use...Ch. 4.1 - Prob. 18ECh. 4.1 - In someone infected with measles, the virus level...Ch. 4.1 - The table shows the number of people per day who...Ch. 4.1 - Use Definition 2 to find an expression for the...Ch. 4.1 - Use Definition 2 to find an expression for the...Ch. 4.1 - Use Definition 2 to find an expression for the...Ch. 4.1 - Prob. 24ECh. 4.1 - Determine a region whose area is equal to the...Ch. 4.1 - a Use Definition 2 to find an expression for the...Ch. 4.1 - Prob. 27ECh. 4.1 - Prob. 28ECh. 4.1 - Prob. 29ECh. 4.1 - Prob. 30ECh. 4.1 - Prob. 31ECh. 4.1 - Prob. 32ECh. 4.2 - Evaluate the Riemann sum for f(x)=x1,6x4, with...Ch. 4.2 - If f(x)=cosx0x3/4 evaluate the Riemann sum with n...Ch. 4.2 - If f(x)=x24,0x3, find the Riemann sum with n = 6,...Ch. 4.2 - a Find the Riemann sum for f(x)=1/x,1x2, with four...Ch. 4.2 - The graph of a function f is given. Estimate...Ch. 4.2 - The graph of g is shown. Estimate 24g(x)dx with...Ch. 4.2 - Prob. 7ECh. 4.2 - The table gives the values of a function obtained...Ch. 4.2 - Use the Midpoint Rule with the given value of n to...Ch. 4.2 - Use the Midpoint Rule with the given value of n to...Ch. 4.2 - Use the Midpoint Rule with the given value of n to...Ch. 4.2 - Use the Midpoint Rule with the given value of n to...Ch. 4.2 - If you have a CAS that evaluates midpoint...Ch. 4.2 - With a programmable calculator or computer see the...Ch. 4.2 - Prob. 15ECh. 4.2 - Prob. 16ECh. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Express the limit as a definite integral on the...Ch. 4.2 - Express the limit as a definite integral on the...Ch. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - Use the form of the definition of the integral...Ch. 4.2 - Prob. 24ECh. 4.2 - Prob. 25ECh. 4.2 - Prob. 26ECh. 4.2 - Prove that abxdx=b2a22Ch. 4.2 - Prove that abx2dx=b3a33Ch. 4.2 - Prob. 29ECh. 4.2 - Express the integral as a limit of Riemann sums....Ch. 4.2 - Prob. 31ECh. 4.2 - Express the integral as a limit of sums. Then...Ch. 4.2 - The graph of f is shown. Evaluate each integral by...Ch. 4.2 - The graph of g consists of two straight fines and...Ch. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Prob. 37ECh. 4.2 - Prob. 38ECh. 4.2 - Evaluate the integral by interpreting it in terms...Ch. 4.2 - Prob. 40ECh. 4.2 - Prob. 41ECh. 4.2 - Given that 0sin4xdx=38, what is 0sin4d?Ch. 4.2 - Prob. 43ECh. 4.2 - Prob. 44ECh. 4.2 - Prob. 45ECh. 4.2 - Prob. 46ECh. 4.2 - Prob. 47ECh. 4.2 - If 28f(x)dx=7.3 and 24f(x)dx=5.9, find 48f(x)dx.Ch. 4.2 - If 09f(x)dx=37 and 09g(x)dx=16, find...Ch. 4.2 - Find 05f(x)dx if f(x)={3forx3xforx3Ch. 4.2 - For the function / whose graph is shown, list the...Ch. 4.2 - If F(x)=2xf(t)dt, where f is the function whose...Ch. 4.2 - Each of the regions A, B, and C bounded by the...Ch. 4.2 - Suppose / has absolute minimum value m and...Ch. 4.2 - Use the properties of integrals to verify the...Ch. 4.2 - Use the properties of integrals to verify the...Ch. 4.2 - Prob. 57ECh. 4.2 - Prob. 58ECh. 4.2 - Prob. 59ECh. 4.2 - Prob. 60ECh. 4.2 - Prob. 61ECh. 4.2 - Use Property 8 of integrals to estimate the value...Ch. 4.2 - Prob. 63ECh. 4.2 - Prob. 64ECh. 4.2 - Use properties of integrals, together with...Ch. 4.2 - Prob. 66ECh. 4.2 - Prob. 67ECh. 4.2 - Prob. 68ECh. 4.2 - Prob. 69ECh. 4.2 - Prob. 70ECh. 4.2 - Let f(x)=0 if x is any rational number and f(x)=1...Ch. 4.2 - Prob. 72ECh. 4.2 - Express the limit as a definite intergal....Ch. 4.2 - Prob. 74ECh. 4.2 - Find 12x2dx. Hint: Choose xi* to be the geometric...Ch. 4.3 - Explain exactly what is meant by the statement...Ch. 4.3 - Let g(x)=0xf(t)dt, where f is the function whose...Ch. 4.3 - Let g(x)=0xf(t)dt, where f is the function whose...Ch. 4.3 - Let g(x)=0xf(t)dt where f is the function whose...Ch. 4.3 - Sketch the area represented by g(x). Then find...Ch. 4.3 - Sketch the area represented by g(x). Then find...Ch. 4.3 - Prob. 7ECh. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - Evaluate the integral. 11x100dxCh. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - Prob. 24ECh. 4.3 - Evaluate the integral. /6sindCh. 4.3 - Evaluate the integral. 55dxCh. 4.3 - Prob. 27ECh. 4.3 - Evaluate the integral. 04(4t)tdtCh. 4.3 - Evaluate the integral. 142+x2xdxCh. 4.3 - Evaluate the integral. 12(3u2)(u+1)duCh. 4.3 - Prob. 31ECh. 4.3 - Evaluate the integral. /4/3csc2dCh. 4.3 - Prob. 33ECh. 4.3 - Evaluate the integral. 12s2+1s2dsCh. 4.3 - Evaluate the integral. 12v5+3v6v4dvCh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - Prob. 44ECh. 4.3 - Prob. 45ECh. 4.3 - Prob. 46ECh. 4.3 - Evaluate the integral and interpret it as a...Ch. 4.3 - Prob. 48ECh. 4.3 - What is wrong with the equation? 21x4dx=x33]21=38Ch. 4.3 - What is wrong with the equation? 124x3dx=2x2]12=32Ch. 4.3 - Prob. 51ECh. 4.3 - What is wrong with the equation? 0sec2xdx=tanx]0=0Ch. 4.3 - Find the derivative of the function....Ch. 4.3 - Prob. 54ECh. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Let F(x)=xcosttdt. Find an equation of the tangent...Ch. 4.3 - Prob. 58ECh. 4.3 - On what interval is the curve y=0xt2t2+t+2dt...Ch. 4.3 - Let F(x)=1xf(t)dt, where f is the function whose...Ch. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - The Fresnel function S was defined in Example 3...Ch. 4.3 - The sine integral function Si(x)=0xsinttdt is...Ch. 4.3 - Let g(x)=0xf(t)dt where f is the function whose...Ch. 4.3 - Let g(x)=0xf(t)dt where f is the function whose...Ch. 4.3 - Evaluate the limit by first recognizing the sum as...Ch. 4.3 - Evaluate the limit by first recognizing the sum as...Ch. 4.3 - Prob. 69ECh. 4.3 - Prob. 70ECh. 4.3 - a Show that 11+x31+x3forx0 b Show that...Ch. 4.3 - Prob. 72ECh. 4.3 - Show that 0510x2x4+x2+1dx0.1 by comparing the...Ch. 4.3 - Let f(x)={0ifx0xif0x12xif1x20ifx2 and...Ch. 4.3 - Prob. 75ECh. 4.3 - Prob. 76ECh. 4.3 - A manufacturing company owns a major piece of...Ch. 4.3 - Prob. 78ECh. 4.3 - The following exercises are intended only for...Ch. 4.3 - The following exercises are intended only for...Ch. 4.3 - Prob. 81ECh. 4.3 - Prob. 82ECh. 4.3 - Prob. 83ECh. 4.3 - Prob. 84ECh. 4.4 - Verify by differentiation that the formula is...Ch. 4.4 - Verify by differentiation that the formula is...Ch. 4.4 - Verify by differentiation that the formula is...Ch. 4.4 - Verify by differentiation that the formula is...Ch. 4.4 - Prob. 5ECh. 4.4 - Prob. 6ECh. 4.4 - Find the general indefinite integral....Ch. 4.4 - Prob. 8ECh. 4.4 - Find the general indefinite integral....Ch. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - Prob. 12ECh. 4.4 - Prob. 13ECh. 4.4 - Prob. 14ECh. 4.4 - Find the general indefinite integral....Ch. 4.4 - Prob. 16ECh. 4.4 - Prob. 17ECh. 4.4 - Prob. 18ECh. 4.4 - Prob. 19ECh. 4.4 - Prob. 20ECh. 4.4 - Prob. 21ECh. 4.4 - Prob. 22ECh. 4.4 - Prob. 23ECh. 4.4 - Evaluate the integral. 11t(1t)2dtCh. 4.4 - Prob. 25ECh. 4.4 - Prob. 26ECh. 4.4 - Prob. 27ECh. 4.4 - Prob. 28ECh. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Prob. 31ECh. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.4 - Prob. 37ECh. 4.4 - Prob. 38ECh. 4.4 - Evaluate the integral. 25|x3|dxCh. 4.4 - Prob. 40ECh. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - Use a graph to estimate the x-intercepts of the...Ch. 4.4 - Prob. 44ECh. 4.4 - The area of the region that lies to the right of...Ch. 4.4 - The boundaries of the shaded region in the figure...Ch. 4.4 - Prob. 47ECh. 4.4 - Prob. 48ECh. 4.4 - Prob. 49ECh. 4.4 - A honeybee population starts with 100 bees and...Ch. 4.4 - Prob. 51ECh. 4.4 - Prob. 52ECh. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - The velocity function in meters per second is...Ch. 4.4 - Prob. 56ECh. 4.4 - The acceleration function in m/s2 and the initial...Ch. 4.4 - Prob. 58ECh. 4.4 - Prob. 59ECh. 4.4 - Prob. 60ECh. 4.4 - Prob. 61ECh. 4.4 - Suppose that a volcano is erupting and readings of...Ch. 4.4 - Lake Lanier in Georgia, USA, is a reservoir...Ch. 4.4 - Prob. 64ECh. 4.4 - The graph of the acceleration a(t) of a car...Ch. 4.4 - Shown is the graph of traffic on an Internet...Ch. 4.4 - Prob. 67ECh. 4.4 - Prob. 68ECh. 4.4 - Prob. 69ECh. 4.4 - Prob. 70ECh. 4.4 - Prob. 71ECh. 4.4 - Prob. 72ECh. 4.4 - Prob. 73ECh. 4.4 - The area labeled B is three times the area labeled...Ch. 4.5 - Evaluate the integral by making the given...Ch. 4.5 - Evaluate the integral by making the given...Ch. 4.5 - Prob. 3ECh. 4.5 - Evaluate the integral by making the given...Ch. 4.5 - Prob. 5ECh. 4.5 - Evaluate the integral by making the given...Ch. 4.5 - Prob. 7ECh. 4.5 - Evaluate the indefinite integral. x2sin(x3)dxCh. 4.5 - Prob. 9ECh. 4.5 - Evaluate the indefinite integral. sin1+costdtCh. 4.5 - Evaluate the indefinite integral. sin(2/3)dCh. 4.5 - Evaluate the indefinite integral. sec22dCh. 4.5 - Prob. 13ECh. 4.5 - Evaluate the indefinite integral. y2(4y3)2/3dyCh. 4.5 - Prob. 15ECh. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 19ECh. 4.5 - Prob. 20ECh. 4.5 - Prob. 21ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 23ECh. 4.5 - Prob. 24ECh. 4.5 - Prob. 25ECh. 4.5 - Evaluate the indefinite integral. sec2xtan2xdxCh. 4.5 - Evaluate the indefinite integral. sec3xtanxdxCh. 4.5 - Prob. 28ECh. 4.5 - Evaluate the indefinite integral. x(2x+5)8dxCh. 4.5 - Prob. 30ECh. 4.5 - Evaluate the indefinite integral. Illustrate and...Ch. 4.5 - Prob. 32ECh. 4.5 - Evaluate the indefinite integral. Illustrate and...Ch. 4.5 - Evaluate the indefinite integral. Illustrate and...Ch. 4.5 - Prob. 35ECh. 4.5 - Prob. 36ECh. 4.5 - Evaluate the definite integral. 011+7x3dxCh. 4.5 - Prob. 38ECh. 4.5 - Evaluate the integral. 0/6sintcos2tdtCh. 4.5 - Prob. 40ECh. 4.5 - Evaluate the definite integral. /4/4(x3+x4tanx)dxCh. 4.5 - Prob. 42ECh. 4.5 - Prob. 43ECh. 4.5 - Prob. 44ECh. 4.5 - Prob. 45ECh. 4.5 - Evaluate the definite integral. /3/3x4sinxdxCh. 4.5 - Evaluate the definite integral. 12xx1dxCh. 4.5 - Prob. 48ECh. 4.5 - Evaluate the definite integral. 1/21cos(x2)x3dxCh. 4.5 - Prob. 50ECh. 4.5 - Evaluate the definite integral. 01dx(1+x)4Ch. 4.5 - Prob. 52ECh. 4.5 - Prob. 53ECh. 4.5 - Prob. 54ECh. 4.5 - Prob. 55ECh. 4.5 - Prob. 56ECh. 4.5 - Prob. 57ECh. 4.5 - Prob. 58ECh. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - Prob. 61ECh. 4.5 - If f is continuous function on , prove that...Ch. 4.5 - If a and b are positive numbers, show that...Ch. 4.5 - Prob. 64ECh. 4.5 - Prob. 65ECh. 4.5 - Prob. 66ECh. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Prob. 69ECh. 4.5 - Prob. 70ECh. 4.5 - Prob. 71ECh. 4.5 - Prob. 72ECh. 4.5 - Prob. 73ECh. 4.5 - Prob. 74ECh. 4.5 - Prob. 75ECh. 4.5 - Prob. 76ECh. 4.5 - Prob. 77ECh. 4.5 - Prob. 78ECh. 4.5 - Prob. 79ECh. 4.5 - Prob. 80ECh. 4.5 - Prob. 81ECh. 4.5 - Prob. 82ECh. 4.5 - Prob. 83ECh. 4.5 - Prob. 84ECh. 4.5 - Prob. 85ECh. 4.R - a Write an expression for a Riemann sum of a...Ch. 4.R - a Write the definition of the definite integral of...Ch. 4.R - Prob. 3CCCh. 4.R - Prob. 4CCCh. 4.R - Prob. 5CCCh. 4.R - Prob. 6CCCh. 4.R - a Explain the meaning of the indefinite integral...Ch. 4.R - Explain exactly what is meant by the statement...Ch. 4.R - State the Substitution Rule. In practice, how do...Ch. 4.R - Prob. 1TFQCh. 4.R - Prob. 2TFQCh. 4.R - Prob. 3TFQCh. 4.R - Prob. 4TFQCh. 4.R - Prob. 5TFQCh. 4.R - Prob. 6TFQCh. 4.R - Prob. 7TFQCh. 4.R - Prob. 8TFQCh. 4.R - Prob. 9TFQCh. 4.R - Prob. 10TFQCh. 4.R - Prob. 11TFQCh. 4.R - Prob. 12TFQCh. 4.R - Prob. 13TFQCh. 4.R - Prob. 14TFQCh. 4.R - Prob. 15TFQCh. 4.R - Prob. 16TFQCh. 4.R - Prob. 17TFQCh. 4.R - Prob. 18TFQCh. 4.R - Use the given graph of f to find the Riemann sum...Ch. 4.R - a Evaluate the Riemann sum for f(x)=x2x0x2 With...Ch. 4.R - Prob. 3ECh. 4.R - Prob. 4ECh. 4.R - Prob. 5ECh. 4.R - Prob. 6ECh. 4.R - Prob. 7ECh. 4.R - Prob. 8ECh. 4.R - The graph of f consists of the three line segments...Ch. 4.R - Prob. 10ECh. 4.R - Prob. 11ECh. 4.R - Prob. 12ECh. 4.R - Prob. 13ECh. 4.R - Prob. 14ECh. 4.R - Prob. 15ECh. 4.R - Prob. 16ECh. 4.R - Prob. 17ECh. 4.R - Prob. 18ECh. 4.R - Evaluate the integral, if it exists. 15dt(t4)2Ch. 4.R - Prob. 20ECh. 4.R - Prob. 21ECh. 4.R - Prob. 22ECh. 4.R - Prob. 23ECh. 4.R - Prob. 24ECh. 4.R - Prob. 25ECh. 4.R - Prob. 26ECh. 4.R - Prob. 27ECh. 4.R - Prob. 28ECh. 4.R - Evaluate the integral, if it exists. 03|x24|dxCh. 4.R - Prob. 30ECh. 4.R - Prob. 31ECh. 4.R - Prob. 32ECh. 4.R - Prob. 33ECh. 4.R - Prob. 34ECh. 4.R - Prob. 35ECh. 4.R - Prob. 36ECh. 4.R - Prob. 37ECh. 4.R - Find the derivative of the function....Ch. 4.R - Find the derivative of the function. y=xxcosdCh. 4.R - Prob. 40ECh. 4.R - Prob. 41ECh. 4.R - Prob. 42ECh. 4.R - Prob. 43ECh. 4.R - Prob. 44ECh. 4.R - Prob. 45ECh. 4.R - Prob. 46ECh. 4.R - Prob. 47ECh. 4.R - Prob. 48ECh. 4.R - Prob. 49ECh. 4.R - Let f(x)={x1if3x01x2if0x1 Evaluate 31f(x)dx by...Ch. 4.R - Prob. 51ECh. 4.R - The Fresnel function S(x)=0xsin(12t2)dt was...Ch. 4.R - Prob. 53ECh. 4.R - Prob. 54ECh. 4.R - Prob. 55ECh. 4.R - Find limh01h22+h1+t3dtCh. 4.R - Prob. 57ECh. 4.R - Prob. 58ECh. 4.P - If xsinxx=0x2f(t)dt, where f is a continuous...Ch. 4.P - Prob. 2PCh. 4.P - If f is a differentiable function such that f(x)...Ch. 4.P - Prob. 4PCh. 4.P - Prob. 5PCh. 4.P - Prob. 6PCh. 4.P - Prob. 7PCh. 4.P - Prob. 8PCh. 4.P - Prob. 9PCh. 4.P - Prob. 10PCh. 4.P - Suppose the coefficients of the cubic polynomial...Ch. 4.P - Prob. 12PCh. 4.P - Prob. 13PCh. 4.P - The figure shows a parabolic segment, that is, a...Ch. 4.P - Given the point a, b in the first quadrant, find...Ch. 4.P - The figure shows a region consisting of all points...Ch. 4.P - Prob. 17PCh. 4.P - For any number c, we let fc(x) be the smaller of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Provethat a) prove that for any irrational numbers there exists? asequence of rational numbers Xn converg to S. b) let S: RR be a sunctions-t. f(x)=(x-1) arc tan (x), xe Q 3(x-1) 1+x² x&Q Show that lim f(x)= 0 14x C) For any set A define the set -A=yarrow_forwardQ2: Find the interval and radius of convergence for the following series: Σ n=1 (-1)η-1 xn narrow_forward8. Evaluate arctan x dx a) xartanx 2 2 In(1 + x²) + C b) xartanx + 1½-3ln(1 + x²) + C c) xartanx + In(1 + x²) + C d) (arctanx)² + C 2 9) Evaluate Inx³ dx 3 a) +C b) ln x² + C c)¾½ (lnx)² d) 3x(lnx − 1) + C - x 10) Determine which integral is obtained when the substitution x = So¹² √1 - x²dx sine is made in the integral πT π π a) √ sin cos e de b) √ cos² de c) c Ꮎ Ꮎ cos² 0 de c) cos e de d) for cos² e de πT 11. Evaluate tan³xdx 1 a) b) c) [1 - In 2] 2 2 c) [1 − In2] d)½½[1+ In 2]arrow_forward12. Evaluate ſ √9-x2 -dx. x2 a) C 9-x2 √9-x2 - x2 b) C - x x arcsin ½-½ c) C + √9 - x² + arcsin x d) C + √9-x2 x2 13. Find the indefinite integral S cos³30 √sin 30 dᎾ . 2√√sin 30 (5+sin²30) √sin 30 (3+sin²30) a) C+ √sin 30(5-sin²30) b) C + c) C + 5 5 5 10 d) C + 2√√sin 30 (3-sin²30) 2√√sin 30 (5-sin²30) e) C + 5 15 14. Find the indefinite integral ( sin³ 4xcos 44xdx. a) C+ (7-5cos24x)cos54x b) C (7-5cos24x)cos54x (7-5cos24x)cos54x - 140 c) C - 120 140 d) C+ (7-5cos24x)cos54x e) C (7-5cos24x)cos54x 4 4 15. Find the indefinite integral S 2x2 dx. ex - a) C+ (x²+2x+2)ex b) C (x² + 2x + 2)e-* d) C2(x²+2x+2)e¯* e) C + 2(x² + 2x + 2)e¯* - c) C2x(x²+2x+2)e¯*arrow_forward4. Which substitution would you use to simplify the following integrand? S a) x = sin b) x = 2 tan 0 c) x = 2 sec 3√√3 3 x3 5. After making the substitution x = = tan 0, the definite integral 2 2 3 a) ៖ ស្លឺ sin s π - dᎾ 16 0 cos20 b) 2/4 10 cos 20 π sin30 6 - dᎾ c) Π 1 cos³0 3 · de 16 0 sin20 1 x²√x²+4 3 (4x²+9)2 π d) cos²8 16 0 sin³0 dx d) x = tan 0 dx simplifies to: de 6. In order to evaluate (tan 5xsec7xdx, which would be the most appropriate strategy? a) Separate a sec²x factor b) Separate a tan²x factor c) Separate a tan xsecx factor 7. Evaluate 3x x+4 - dx 1 a) 3x+41nx + 4 + C b) 31n|x + 4 + C c) 3 ln x + 4+ C d) 3x - 12 In|x + 4| + C x+4arrow_forward1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps (each step must be justified). Theorem 0.1 (Abel's Theorem). If y1 and y2 are solutions of the differential equation y" + p(t) y′ + q(t) y = 0, where p and q are continuous on an open interval, then the Wronskian is given by W (¥1, v2)(t) = c exp(− [p(t) dt), where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or W (y1, y2)(t) = 0 for every t in I. 1. (a) From the two equations (which follow from the hypotheses), show that y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0, 2. (b) Observe that Hence, conclude that (YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0. W'(y1, y2)(t) = yY2 - Y1 y2- W' + p(t) W = 0. 3. (c) Use the result from the previous step to complete the proof of the theorem.arrow_forward2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential equation p(x)y" + q(x)y' + r(x) y = 0 on an open interval I. 1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a fundamental set of solutions. 2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and Y2 cannot form a fundamental set of solutions. 3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that both are solutions to the differential equation t² y″ – 2ty' + 2y = 0. Then justify why this does not contradict Abel's theorem. 4. (d) What can you conclude about the possibility that t and t² are solutions to the differential equation y" + q(x) y′ + r(x)y = 0?arrow_forwardQuestion 4 Find an equation of (a) The plane through the point (2, 0, 1) and perpendicular to the line x = y=2-t, z=3+4t. 3t, (b) The plane through the point (3, −2, 8) and parallel to the plane z = x+y. (c) The plane that contains the line x = 1+t, y = 2 − t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1. (d) The plane that passes through the point (1,2,3) and contains the line x = 3t, y = 1+t, and z = 2-t. (e) The plane that contains the lines L₁: x = 1 + t, y = 1 − t, z = 2t and L2 : x = 2 − s, y = s, z = 2.arrow_forwardPlease find all values of x.arrow_forward3. Consider the initial value problem 9y" +12y' + 4y = 0, y(0) = a>0: y′(0) = −1. Solve the problem and find the value of a such that the solution of the initial value problem is always positive.arrow_forward5. Euler's equation. Determine the values of a for which all solutions of the equation 5 x²y" + axy' + y = 0 that have the form (A + B log x) x* or Ax¹¹ + Bä” tend to zero as a approaches 0.arrow_forward4. Problem on variable change. The purpose of this problem is to perform an appropriate change of variables in order to reduce the problem to a second-order equation with constant coefficients. ty" + (t² − 1)y'′ + t³y = 0, 0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Definite Integral Calculus Examples, Integration - Basic Introduction, Practice Problems; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=rCWOdfQ3cwQ;License: Standard YouTube License, CC-BY