Student Solutions Manual For Basic Technical Mathematics And Basic Technical Mathematics With Calculus
11th Edition
ISBN: 9780134434636
Author: Allyn J. Washington, Richard Evans
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.5, Problem 35E
To determine
The length of the handrail.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How many quadrillion BTU were generated using renewable energy sources?
The final answer is 8/π(sinx) + 8/3π(sin 3x)+ 8/5π(sin5x)....
Keity
x२
1. (i)
Identify which of the following subsets of R2 are open and which
are not.
(a)
A = (2,4) x (1, 2),
(b)
B = (2,4) x {1,2},
(c)
C = (2,4) x R.
Provide a sketch and a brief explanation to each of your answers.
[6 Marks]
(ii)
Give an example of a bounded set in R2 which is not open.
[2 Marks]
(iii)
Give an example of an open set in R2 which is not bounded.
[2 Marks
Chapter 4 Solutions
Student Solutions Manual For Basic Technical Mathematics And Basic Technical Mathematics With Calculus
Ch. 4.1 - Change 17°24′ to decimal form.
Ch. 4.1 - Prob. 2PECh. 4.1 - Prob. 3PECh. 4.1 - Prob. 1ECh. 4.1 - Prob. 2ECh. 4.1 - Prob. 3ECh. 4.1 - Prob. 4ECh. 4.1 - Prob. 5ECh. 4.1 - Prob. 6ECh. 4.1 - Prob. 7E
Ch. 4.1 - Prob. 8ECh. 4.1 - Prob. 9ECh. 4.1 - Prob. 10ECh. 4.1 - Prob. 11ECh. 4.1 - Prob. 12ECh. 4.1 - Prob. 13ECh. 4.1 - Prob. 14ECh. 4.1 - Prob. 15ECh. 4.1 - In Exercises 15–18, by means of the definition of...Ch. 4.1 - Prob. 17ECh. 4.1 - Prob. 18ECh. 4.1 - In Exercises 19–22, use a calculator conversion...Ch. 4.1 - In Exercises 19–22, use a calculator conversion...Ch. 4.1 - In Exercises 19–22, use a calculator conversion...Ch. 4.1 - Prob. 22ECh. 4.1 - In Exercises 23–26, use a calculator conversion...Ch. 4.1 - Prob. 24ECh. 4.1 - Prob. 25ECh. 4.1 - Prob. 26ECh. 4.1 - Prob. 27ECh. 4.1 - Prob. 28ECh. 4.1 - Prob. 29ECh. 4.1 - Prob. 30ECh. 4.1 - Prob. 31ECh. 4.1 - Prob. 32ECh. 4.1 - Prob. 33ECh. 4.1 - In Exercises 31–34, change the given angles to...Ch. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Prob. 37ECh. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - Prob. 40ECh. 4.1 - In Exercises 35–42, draw angles in standard...Ch. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.1 - Prob. 46ECh. 4.1 - Prob. 47ECh. 4.1 - Prob. 48ECh. 4.1 - Prob. 49ECh. 4.1 - Prob. 50ECh. 4.1 - Prob. 51ECh. 4.1 - Prob. 52ECh. 4.1 - Prob. 53ECh. 4.1 - Prob. 54ECh. 4.1 - Prob. 55ECh. 4.1 - A windmill rotates 15.6 revolutions in a...Ch. 4.2 - In Example 2, change (3, 4) to (4, 3) and then...Ch. 4.2 - Prob. 2PECh. 4.2 - Prob. 1ECh. 4.2 - Prob. 2ECh. 4.2 - Prob. 3ECh. 4.2 - Prob. 4ECh. 4.2 - Prob. 5ECh. 4.2 - Prob. 6ECh. 4.2 - In Exercises 3–18, find values of the...Ch. 4.2 - Prob. 8ECh. 4.2 - Prob. 9ECh. 4.2 - Prob. 10ECh. 4.2 - Prob. 11ECh. 4.2 - Prob. 12ECh. 4.2 - Prob. 13ECh. 4.2 - Prob. 14ECh. 4.2 - Prob. 15ECh. 4.2 - Prob. 16ECh. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - In Exercises 19–26, find the values of the...Ch. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - Prob. 23ECh. 4.2 - In Exercises 19–26, find the values of the...Ch. 4.2 - Prob. 25ECh. 4.2 - Prob. 26ECh. 4.2 - Prob. 27ECh. 4.2 - In Exercises 27-30, each given point is on the...Ch. 4.2 - Prob. 29ECh. 4.2 - Prob. 30ECh. 4.2 - Prob. 31ECh. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Prob. 34ECh. 4.2 - Prob. 35ECh. 4.2 - Prob. 36ECh. 4.2 - Prob. 37ECh. 4.2 - Prob. 38ECh. 4.2 - Prob. 39ECh. 4.2 - Prob. 40ECh. 4.2 - Prob. 41ECh. 4.2 - Prob. 42ECh. 4.3 - Find the value of sin 12.5°.
Ch. 4.3 - Find θ if tan θ = 1.039.
Ch. 4.3 - Find the values of cot 56.4°.
Ch. 4.3 - Prob. 4PECh. 4.3 - Prob. 1ECh. 4.3 - In Example 5, change sec 27.82° to csc 27.82° and...Ch. 4.3 - In Exercises 1–4, make the given changes in the...Ch. 4.3 -
In Exercises 1–4, make the given changes in the...Ch. 4.3 - In Exercises 5–20, find the values of the...Ch. 4.3 - In Exercises 5–20, find the values of the...Ch. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - In Exercises 5–20, find the values of the...Ch. 4.3 - In Exercises 5–20, find the values of the...Ch. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - In Exercises 5–20, find the values of the...Ch. 4.3 - In Exercises 5–20, find the values of the...Ch. 4.3 - In Exercises 5–20, find the values of the...Ch. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - Prob. 31ECh. 4.3 - Prob. 32ECh. 4.3 - Prob. 33ECh. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - In Exercises 21–36, find θ for each of the given...Ch. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - In Exercises 41–44, use a calculator to verify the...Ch. 4.3 - Prob. 42ECh. 4.3 - In Exercises 41–44, use a calculator to verify the...Ch. 4.3 - Prob. 44ECh. 4.3 - Prob. 45ECh. 4.3 - Prob. 46ECh. 4.3 - Prob. 47ECh. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - Prob. 50ECh. 4.3 - Prob. 51ECh. 4.3 - In Exercises 51–54, find the values of the...Ch. 4.3 - In Exercises 51–54, find the values of the...Ch. 4.3 - In Exercises 51–54, find the values of the...Ch. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - In Exercises 55–60, solve the given problems.
The...Ch. 4.3 - Prob. 59ECh. 4.3 - Prob. 60ECh. 4.4 - Prob. 1PECh. 4.4 - Prob. 2PECh. 4.4 - Prob. 3PECh. 4.4 - Prob. 1ECh. 4.4 - Prob. 2ECh. 4.4 - Prob. 3ECh. 4.4 - Prob. 4ECh. 4.4 - Prob. 5ECh. 4.4 - Prob. 6ECh. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - Prob. 9ECh. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - Prob. 13ECh. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - Prob. 15ECh. 4.4 - Prob. 16ECh. 4.4 - Prob. 17ECh. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - Prob. 19ECh. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - Prob. 23ECh. 4.4 - Prob. 24ECh. 4.4 - Prob. 25ECh. 4.4 - Prob. 26ECh. 4.4 - Prob. 27ECh. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - Prob. 29ECh. 4.4 - In Exercises 7–30, solve the right triangles with...Ch. 4.4 - Prob. 31ECh. 4.4 - Prob. 32ECh. 4.4 - In Exercises 31–34, find the part of the triangle...Ch. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - In Exercises 35–38, find the indicated part of the...Ch. 4.4 - Prob. 37ECh. 4.4 - In Exercises 35–38, find the indicated part of the...Ch. 4.4 - Prob. 39ECh. 4.4 - In Exercises 39–42, solve the given problems.
40....Ch. 4.4 - In Exercises 39–42, solve the given problems.
41....Ch. 4.4 - Prob. 42ECh. 4.5 - Find θ if the letters in the road are 2.0 m long,...Ch. 4.5 - Prob. 1ECh. 4.5 - Prob. 2ECh. 4.5 - Prob. 3ECh. 4.5 - In Exercises 3–44, solve the given problems....Ch. 4.5 - Prob. 5ECh. 4.5 - In Exercises 3–44, solve the given problems....Ch. 4.5 - In Exercises 3–44, solve the given problems....Ch. 4.5 - Prob. 8ECh. 4.5 - In Exercises 3–44, solve the given problems....Ch. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - Prob. 12ECh. 4.5 - Prob. 13ECh. 4.5 - Prob. 14ECh. 4.5 - Prob. 15ECh. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 19ECh. 4.5 - Prob. 20ECh. 4.5 - Prob. 21ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 23ECh. 4.5 - Prob. 24ECh. 4.5 - In Exercises 3–44, solve the given problems....Ch. 4.5 - Prob. 26ECh. 4.5 - Prob. 27ECh. 4.5 - Prob. 28ECh. 4.5 - Prob. 29ECh. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - In Exercises 3–44, solve the given problems....Ch. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Prob. 35ECh. 4.5 - Prob. 36ECh. 4.5 - Prob. 37ECh. 4.5 - Prob. 38ECh. 4.5 - Prob. 39ECh. 4.5 - Prob. 40ECh. 4.5 - Prob. 41ECh. 4.5 - Prob. 42ECh. 4.5 - Prob. 43ECh. 4.5 - Prob. 44ECh. 4 - Prob. 1RECh. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Prob. 17RECh. 4 - Prob. 18RECh. 4 - Prob. 19RECh. 4 - Prob. 20RECh. 4 - Prob. 21RECh. 4 - Prob. 22RECh. 4 - Prob. 23RECh. 4 - Prob. 24RECh. 4 - Prob. 25RECh. 4 - Prob. 26RECh. 4 - In Exercises 23-28, find the indicated...Ch. 4 - Prob. 28RECh. 4 - Prob. 29RECh. 4 - In Exercises 5–20, find the values of the...Ch. 4 - Prob. 31RECh. 4 - Prob. 32RECh. 4 - Prob. 33RECh. 4 - In Exercises 29–36, find the values of the...Ch. 4 - In Exercises 29–36, find the values of the...Ch. 4 - Prob. 36RECh. 4 - In Exercises 37–48, find θ for each of the given...Ch. 4 - Prob. 38RECh. 4 - In Exercises 37–48, find θ for each of the given...Ch. 4 - In Exercises 37–48, find θ for each of the given...Ch. 4 - In Exercises 37–48, find θ for each of the given...Ch. 4 - Prob. 42RECh. 4 - Prob. 43RECh. 4 - Prob. 44RECh. 4 - In Exercises 37–48, find θ for each of the given...Ch. 4 - In Exercises 37–48, find θ for each of the given...Ch. 4 - Prob. 47RECh. 4 - Prob. 48RECh. 4 - In Exercises 49 and 50, assume θ is an acute angle...Ch. 4 - Prob. 50RECh. 4 - Prob. 51RECh. 4 - Prob. 52RECh. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - In Exercises 51–60, solve the right triangles with...Ch. 4 - In Exercises 51–60, solve the right triangles with...Ch. 4 - Prob. 58RECh. 4 - Prob. 59RECh. 4 - Prob. 60RECh. 4 - Prob. 61RECh. 4 - Prob. 62RECh. 4 - Prob. 63RECh. 4 - Prob. 64RECh. 4 - Prob. 65RECh. 4 - Prob. 66RECh. 4 - Prob. 67RECh. 4 - Prob. 68RECh. 4 - Prob. 69RECh. 4 - Prob. 70RECh. 4 - Prob. 71RECh. 4 - Prob. 72RECh. 4 - Prob. 73RECh. 4 -
In Exercises 61–105, solve the given...Ch. 4 - Prob. 75RECh. 4 - Prob. 76RECh. 4 - Prob. 77RECh. 4 - The apparent power S in an electric circuit in...Ch. 4 - Prob. 79RECh. 4 - Prob. 80RECh. 4 - Prob. 81RECh. 4 - Prob. 82RECh. 4 - Prob. 83RECh. 4 - Prob. 84RECh. 4 - Prob. 85RECh. 4 - Prob. 86RECh. 4 - Prob. 87RECh. 4 - Prob. 88RECh. 4 - Prob. 89RECh. 4 - Prob. 90RECh. 4 - Prob. 91RECh. 4 - Prob. 92RECh. 4 - Prob. 93RECh. 4 - Prob. 94RECh. 4 - Prob. 95RECh. 4 - Prob. 96RECh. 4 - Prob. 97RECh. 4 - Prob. 98RECh. 4 - Prob. 99RECh. 4 - In Exercises 61–105, solve the given...Ch. 4 - Prob. 101RECh. 4 - Prob. 102RECh. 4 - Prob. 103RECh. 4 - Prob. 104RECh. 4 - In Exercises 61–105, solve the given...Ch. 4 - Prob. 1PTCh. 4 - Prob. 2PTCh. 4 - Prob. 3PTCh. 4 - Prob. 4PTCh. 4 - Prob. 5PTCh. 4 - Find tan θ in fractional form if (assume θ is...Ch. 4 - Find csc θ if tan θ = 1.294 (assume θ is acute).
Ch. 4 - Prob. 8PTCh. 4 - Prob. 9PTCh. 4 - Prob. 10PTCh. 4 - Prob. 11PTCh. 4 - Prob. 12PTCh. 4 - Prob. 13PTCh. 4 - Prob. 14PTCh. 4 - Prob. 15PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 2. (i) Which of the following statements are true? Construct coun- terexamples for those that are false. (a) sequence. Every bounded sequence (x(n)) nEN C RN has a convergent sub- (b) (c) (d) Every sequence (x(n)) nEN C RN has a convergent subsequence. Every convergent sequence (x(n)) nEN C RN is bounded. Every bounded sequence (x(n)) EN CRN converges. nЄN (e) If a sequence (xn)nEN C RN has a convergent subsequence, then (xn)nEN is convergent. [10 Marks] (ii) Give an example of a sequence (x(n))nEN CR2 which is located on the parabola x2 = x², contains infinitely many different points and converges to the limit x = (2,4). [5 Marks]arrow_forward2. (i) What does it mean to say that a sequence (x(n)) nEN CR2 converges to the limit x E R²? [1 Mark] (ii) Prove that if a set ECR2 is closed then every convergent sequence (x(n))nen in E has its limit in E, that is (x(n)) CE and x() x x = E. [5 Marks] (iii) which is located on the parabola x2 = = x x4, contains a subsequence that Give an example of an unbounded sequence (r(n)) nEN CR2 (2, 16) and such that x(i) converges to the limit x = (2, 16) and such that x(i) # x() for any i j. [4 Marksarrow_forward1. (i) which are not. Identify which of the following subsets of R2 are open and (a) A = (1, 3) x (1,2) (b) B = (1,3) x {1,2} (c) C = AUB (ii) Provide a sketch and a brief explanation to each of your answers. [6 Marks] Give an example of a bounded set in R2 which is not open. (iii) [2 Marks] Give an example of an open set in R2 which is not bounded. [2 Marks]arrow_forward
- sat Pie Joday) B rove: ABCB. Step 1 Statement D is the midpoint of AC ED FD ZEDAZFDC Reason Given 2 ADDC Select a Reason... A OBB hp B E F D Carrow_forward2. if limit. Recall that a sequence (x(n)) CR2 converges to the limit x = R² lim ||x(n)x|| = 0. 818 - (i) Prove that a convergent sequence (x(n)) has at most one [4 Marks] (ii) Give an example of a bounded sequence (x(n)) CR2 that has no limit and has accumulation points (1, 0) and (0, 1) [3 Marks] (iii) Give an example of a sequence (x(n))neN CR2 which is located on the hyperbola x2 1/x1, contains infinitely many different Total marks 10 points and converges to the limit x = (2, 1/2). [3 Marks]arrow_forward3. (i) Consider a mapping F: RN Rm. Explain in your own words the relationship between the existence of all partial derivatives of F and dif- ferentiability of F at a point x = RN. (ii) [3 Marks] Calculate the gradient of the following function f: R2 → R, f(x) = ||x||3, Total marks 10 where ||x|| = √√√x² + x/2. [7 Marks]arrow_forward
- 1. (i) (ii) which are not. What does it mean to say that a set ECR2 is closed? [1 Mark] Identify which of the following subsets of R2 are closed and (a) A = [-1, 1] × (1, 3) (b) B = [-1, 1] x {1,3} (c) C = {(1/n², 1/n2) ER2 | n EN} Provide a sketch and a brief explanation to each of your answers. [6 Marks] (iii) Give an example of a closed set which does not have interior points. [3 Marks]arrow_forwardFunction: y=xsinx Interval: [ 0 ; π ] Requirements: Draw the graphical form of the function. Show the coordinate axes (x and y). Choose the scale yourself and show it in the flowchart. Create a flowchart based on the algorithm. Write the program code in Python. Additional requirements: Each stage must be clearly shown in the flowchart. The program must plot the graph and save it in PNG format. Write the code in a modular way (functions and main section should be separate). Expected results: The graph of y=xsinx will be plotted in the interval [ 0 ; π ]. The algorithm and flowchart will be understandable and complete. When you test the code, a graph file in PNG format will be created.arrow_forwardA company specializing in lubrication products for vintage motors produce two blended oils, Smaza and Nefkov. They make a profit of K5,000.00 per litre of Smaza and K4,000.00 per litre of Nefkov. A litre of Smaza requires 0.4 litres of heavy oil and 0.6 litres of light oil. A litre of Nefkov requires 0.8 litres of heavy oil and 0.2 litres of light oil. The company has 100 litres of heavy oil and 80 litres of light oil. How many litres of each product should they make to maximize profits and what level of profit will they obtain? Show all your workings.arrow_forward
- Use the graphs to find estimates for the solutions of the simultaneous equations.arrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT SOLVE BY HAND STEP BY STEParrow_forward6) Find the area of the shaded region. Leave your answer in terms of π. A 2 B C A) 16.5л B) 30д 3.1988 C) 3л π D) 7.5π 9.+2uarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
What are the Different Types of Triangles? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=1k0G-Y41jRA;License: Standard YouTube License, CC-BY
Law of Sines AAS, ASA, SSA Ambiguous Case; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=FPVGb-yWj3s;License: Standard YouTube License, CC-BY
Introduction to Statistics..What are they? And, How Do I Know Which One to Choose?; Author: The Doctoral Journey;https://www.youtube.com/watch?v=HpyRybBEDQ0;License: Standard YouTube License, CC-BY
Triangles | Mathematics Grade 5 | Periwinkle; Author: Periwinkle;https://www.youtube.com/watch?v=zneP1Q7IjgQ;License: Standard YouTube License, CC-BY
What Are Descriptive Statistics And Inferential Statistics?; Author: Amour Learning;https://www.youtube.com/watch?v=MUyUaouisZE;License: Standard Youtube License