EBK ELECTRIC MOTOR CONTROL
10th Edition
ISBN: 9780100784598
Author: Herman
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 45, Problem 1SQ
To determine
Explain why small DC motors can be connected directly across the line for starting.
Expert Solution & Answer

Explanation of Solution
Small DC motors can be started by connecting directly across the line with the help of a switch or a connector. It does not cause any damage because the motor can attain full speed very quickly due to small amount of rotor’s inertia and friction. Also a high starting current will decrease very quickly due to the fast increase in the counter-electromotive force.
Conclusion:
Thus, a motor that can be connected directly across a line for starting is explained.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The first photo is question 1
a) Write down the order of the transfer function in each of the following cases. Assume that
there are no terms in the numerator that will cancel terms in the denominator.
10
H(s)
H(s)
=
s+1
5
(s+3)(s—. 4)
4s1
5
H(s)
=
H(s)
-
83 +1
s27s
6
H(s)
H(s)
=
s(s²+4s)
2s27s+1
84583882 +3s+2
H(s)
83 +8
s+1
=
H(s)
s34s26s+5
s52s4383 + 4s2 +5s +6
Question 5 (
A system is found to have zeros of -3 and poles of 4, and -2. The system also has a gain of
4. Write out the corresponding transfer function.
Question 6.
A system has a transfer function of
What is the gain, K, of the system?
Question 7 (
A system has a transfer function of
H(s)
-
4
8+5
H(s):
=
4
8 +5
A step input of size 3 is applied to the system at time zero (Since we're dealing with transfer
functions, x(0) is also zero at time zero).
a) [10] What is the response ✗(s) of the system?
b) [10] Derive the time dependent solution, x(t), of this response
Chapter 45 Solutions
EBK ELECTRIC MOTOR CONTROL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Note: You might want to do the last question first because the last question asks you to write some python code to calculate the zeros and poles. You could use that code here to help you (except the first problem which you should be able to do by inspection alone) Find the poles and zeros for each of the following transfer functions 1. S+3 H(s) = 8 5 2. H(s): = s238 +1 s2 +48 +3 3. s(s+4) H(s) s3+2s23s 4. 82-586 H(s) = - 8382-68 5. H(s): = s2 +48 +3 s45836s2 - 6arrow_forwardWrite python program to plot the zeros and poles if a user provides the coefficients for the numerator and denominator of the transfer function. Since the zeros and poles can be complex, this plot is essentially and argand diagram, where the x axis is the real component and the y axis the imaginary component of a given zero or pole. Create a method called plot-poles zeros(num, den) which takes two lists containing the coefficients. Here is an example and the resulting plot. num [1, 3, 7] # yields zeros at -1.5 +/- 2.17945j den = [1, 4, 5, 3] # yields poles at -2.46557, -0.7672143 +/- 0.7925519j plot_poles_zeros(num, den) Imaginary Page 2 Pole-Zero Plot 3 Zeros × Poles 2 1 -2 1 * Real When you write your code you are only allowed to use the packages numpy and matplotlib. Make sure you label the axes, provide a legend and give a title to your plot (See the example plot). Hint: numpy has a method called roots. When given a list of numbers corresponding to the coefficients of a polynomial,…arrow_forwarda) [10] Compute the zeros and poles for the following transfer function: $2 +5s+6 H(s): s2 +3s+2 b) [10] Factor both polynomials in the numerator and denominator. What does this tell you about one of the poles and zeros you found in a)?arrow_forward
- Pls show neat and whole solutionarrow_forward2. Find the steady-state current i(t) in the circuit shown below when Vs(t) = 100cos(500t -30) volts. Express your answer in cosine form i.e., i(t) Im cos (oot+). (20 pts) LLE) 10052 Vs (E) 40uF 0.3 Harrow_forward1. Determine the thevenin equivalent circuit (i.e., Vth, Zth) from the terminals a-b in the circuit shown below. (15 pts) j512 1052 1020arrow_forward
- Need schematic diagram for this computerized don't use guidelines answer okk will dislikearrow_forwardthe question with its answer but i still dont see how the expansion and the calculation done. please show detailed steps.arrow_forwardQ6) Find the current density J for the magnetic field intensity vectors: (a) H = x²yax + y²zay - 2xzaz pzap + p³a + 3pz²a (b) H = sin cos (c) H = a,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning


Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning