Finite Mathematics & Its Applications (12th Edition)
12th Edition
ISBN: 9780134437767
Author: Larry J. Goldstein, David I. Schneider, Martha J. Siegel, Steven Hair
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4.5, Problem 1CYU
A linear programming problem involving three variables and four nontrivial inequalities has the number 52 as the maximum value of its objective function.
How many variables and nontrivial inequalities will the dual problem have?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Give the Steps Involved in graphical method for solving linear programming problem?
Let x represent the number of standard models made and let y represent the number of deluxe models made. Write the inequality that best describes the finishing time constraint
Show your work!
An investor has $120,000 to invest in bonds. Bond A yields an average of 5% and the bond B yields 8.3%. The investor requires that at least 3 times as much money be invested in bond A as in bond B. You must invest in these bonds to maximize his return
?. This can be set up as a linear programming problem. Introduce the decision variables:
?=dollars invested in bond A
?=dollars invested in bond B
Find the objective function
?
Chapter 4 Solutions
Finite Mathematics & Its Applications (12th Edition)
Ch. 4.1 - 1. Determine by inspection a particular solution...Ch. 4.1 - Prob. 2CYUCh. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - 712For each of the linear programming problems in...Ch. 4.1 - 7–12 For each of the linear programming problems...
Ch. 4.1 - 712For each of the linear programming problems in...Ch. 4.1 - 7–12 For each of the linear programming problems...Ch. 4.1 - 7–12 For each of the linear programming problems...Ch. 4.1 - 712For each of the linear programming problems in...Ch. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - In Exercises 1320, find the particular solution...Ch. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - In Exercises 1320, find the particular solution...Ch. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - Prob. 18ECh. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - In Exercises 1320, find the particular solution...Ch. 4.1 - Pivot the simplex tableau...Ch. 4.1 - Pivot the simplex tableau...Ch. 4.1 - 23. (a) Name the group I and group II variables in...Ch. 4.1 - 24. (a) Name the group I and group II variables in...Ch. 4.2 - 1. Which of these simplex tableaux has a solution...Ch. 4.2 - Prob. 2CYUCh. 4.2 - In Exercises 1–6, determine the next pivot element...Ch. 4.2 - In Exercises 16, determine the next pivot element...Ch. 4.2 - In Exercises 16, determine the next pivot element...Ch. 4.2 - In Exercises 1–6, determine the next pivot element...Ch. 4.2 - Prob. 5ECh. 4.2 - In Exercises 16, determine the next pivot element...Ch. 4.2 - !! For each of the simplex tableaux in Exercises...Ch. 4.2 - For each of the simplex tableaux in Exercises...Ch. 4.2 - !! For each of the simplex tableaux in Exercises...Ch. 4.2 - For each of the simplex tableaux in Exercises...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - 21. Toy Factory A toy manufacturer makes...Ch. 4.2 - 22. Agriculture A large agricultural firm has 250...Ch. 4.2 - 23. Furniture Factory Suppose that a furniture...Ch. 4.2 - Stereo Store A stereo store sells three brands of...Ch. 4.2 - Weight Loss and exercise As part of a...Ch. 4.2 - 26. Furniture Factory A furniture manufacturer...Ch. 4.2 - Prob. 27ECh. 4.2 - Baby Products A baby products company makes car...Ch. 4.2 - Potting Soil Mixes A lawn and garden store creates...Ch. 4.2 - Prob. 30ECh. 4.2 - Prob. 31ECh. 4.2 - 32. Maximize subject to the constraints
Ch. 4.2 - Maximize 60x+90y+300z subject to the constraints...Ch. 4.2 - 34. Maximize subject to the constraints
Ch. 4.2 - Maximize 2x+4y subject to the constraints...Ch. 4.2 - Prob. 36ECh. 4.2 - In Exercises 1–6, determine the next pivot element...Ch. 4.3 - 1. Convert the following minimum problem into a...Ch. 4.3 - Suppose that the solution of a minimum problem...Ch. 4.3 - In Exercises 14, write each linear programming...Ch. 4.3 - In Exercises 14, write each linear programming...Ch. 4.3 - In Exercises 1–4, write each linear programming...Ch. 4.3 - In Exercises 1–4, write each linear programming...Ch. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - In Exercises 916, solve the linear programming...Ch. 4.3 - In Exercises 9–16, solve the linear programming...Ch. 4.3 - In Exercises 9–16, solve the linear programming...Ch. 4.3 - In Exercises 9–16, solve the linear programming...Ch. 4.3 - Prob. 13ECh. 4.3 - In Exercises 916, solve the linear programming...Ch. 4.3 - In Exercises 916, solve the linear programming...Ch. 4.3 - Prob. 16ECh. 4.3 - 17. Nutrition A dietitian is designing a daily...Ch. 4.3 - Electronics Manufacture A manufacturing company...Ch. 4.3 - Supply and Demand An appliance store sells three...Ch. 4.3 - 20. Political Campaign A citizen decides to...Ch. 4.3 - Inventory A Manufacturer of computers must fill...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - 24. Maximize subject to the constraints
Ch. 4.4 - Consider the furniture manufacturing problem,...Ch. 4.4 - Prob. 2CYUCh. 4.4 - Prob. 1ECh. 4.4 - Prob. 2ECh. 4.4 - Exercises 3 and 4 refer to the transportation...Ch. 4.4 - Exercises 3 and 4 refer to the transportation...Ch. 4.4 - Prob. 5ECh. 4.4 - Prob. 6ECh. 4.4 - Prob. 7ECh. 4.4 - Prob. 8ECh. 4.4 - Prob. 9ECh. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - Prob. 12ECh. 4.4 - Prob. 13ECh. 4.4 - In Exercises 13 and 14, give the matrix...Ch. 4.4 - Prob. 15ECh. 4.4 - Prob. 16ECh. 4.4 - Prob. 17ECh. 4.4 - Prob. 18ECh. 4.4 - 19. Create a sensitivity report for the...Ch. 4.4 - Create a sensitivity report for the nutrition...Ch. 4.5 - A linear programming problem involving three...Ch. 4.5 - Prob. 2CYUCh. 4.5 - Prob. 1ECh. 4.5 - Prob. 2ECh. 4.5 - In Exercises 16, determine the dual problem of the...Ch. 4.5 - In Exercises 16, determine the dual problem of the...Ch. 4.5 - Prob. 5ECh. 4.5 - Prob. 6ECh. 4.5 - 7. The final simplex tableau for the linear...Ch. 4.5 - The final simplex tableau for the dual of the...Ch. 4.5 - Prob. 9ECh. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - In Exercises 11–14, determine the dual problem....Ch. 4.5 - Prob. 13ECh. 4.5 - In Exercises 11–14, determine the dual problem....Ch. 4.5 - 15. Cutting edge Knife Co. Give an economic...Ch. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 19ECh. 4.5 - Use the dual to solve Exercises 20 and 21....Ch. 4.5 - Use the dual to solve Exercises 20 and...Ch. 4 - 1. What is the standard maximization form of a...Ch. 4 - Prob. 2FCCECh. 4 - Prob. 3FCCECh. 4 - Give the steps for carrying out the simplex method...Ch. 4 - Prob. 5FCCECh. 4 - Prob. 6FCCECh. 4 - Prob. 7FCCECh. 4 - State the fundamental theorem of duality.Ch. 4 - Prob. 9FCCECh. 4 - 10. What is meant by “sensitivity analysis”?
Ch. 4 - Prob. 11FCCECh. 4 - In Exercises 1–10, use the simplex method to solve...Ch. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Determine the dual problem of the linear...Ch. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Consider the linear programming problems in...Ch. 4 - Prob. 17RECh. 4 - Nutrition A camp counselor wants to make a...Ch. 4 - Prob. 19RECh. 4 - 20. Stereo Store Consider the stereo store of...Ch. 4 - Jason’s House of Cheese offers two cheese...Ch. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Jasons House of Cheese offers two cheese...Ch. 4 - Jasons House of Cheese offers two cheese...Ch. 4 - Prob. 6P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- A company manufactures two fertilizers, x and y. Each 50-pound bag of fertilizer requires three ingredients, which are available in the limited quantities shown in the table. The profit on each bag of fertilizer x is 6 and on each bag of y is 5. How many bags of each product should be produced to maximize the profit? Ingredient Number of Pounds in Fertilizer x Number of Pounds in Fertilizer y Total number of Pounds Available Nitrogen 6 10 20,000 Phosphorus 8 6 16,400 Potash 6 4 12,000arrow_forwardUse your schools library, the Internet, or some other reference source to find the real-life applications of constrained optimization.arrow_forwardFind the maximum value of P=4x+3y subject to the constraints of Example 1. {x+y42x+y6x0y0arrow_forward
- In Example 3, if the accountant earns a profit of 100 on each individual return and a profit of 175 on each business return, find the maximum profit. An accountant prepares tax returns for individuals and for small businesses. On average, each individual return requires 3 hours of her time and 1 hour of computer time. Each business return requires 4 hours of her time and 2 hours of computer time. Because of other business considerations, her time is limited to 240 hours, and the computer time is limited to 100 hours. If she earns a profit of 80 on each individual return and a profit of 150 on each business return, how many returns of each type should she prepare to maximize her profit?arrow_forwardLet x represent the number of gasoline engines produced and let y represent the number of diesel engines produced. Write the equation that best describes the objective function Show your workarrow_forwardAnswer the question using linear programming simplex method. A dietician has learned from a nutritional book that his family needs at least 300 grams of protein and at least 60 milligrams of iron per day for sound health. These nutrients can be obtained from meat and vegetable products. Each kilogram of meat cost an average of P90 and contains an average of 150 grams of protein and 15 milligrams of iron while each kilogram of vegetables cost P22.50 and has 10 grams of protein and 5 milligrams of iron. He wants to determine the quantities of food that meet the nutritional requirements at least cost.arrow_forward
- Formulate a linear programming problem that can be used to solve the following question. Farmer Green has 20 acres available to plant maroon and orange carrots. Each acre of maroon carrots will yield 2 tons of carrots and each acre of orange carrots will yield 4 tons of carrots. He wants to have at least four times as many tons of maroon carrots as he does of orange carrots. The profit for maroon carrots is $170 per ton and the profit for orange carrots is $90 per ton. How many acres of each type of carrots should Farmer Green plant to maximize his profit? x = number of acres of maroon carrots planted y = number of acres of orange carrots planted ---Select---|F= Subject to (objective function) (acres planted) (ratio) x ---Select--- 0, y ---Select--- 0 (nonnegativity constraint)arrow_forwardCreate your own original Linear Programming problem with a minimum of two variables and two constraints. Your problem should be presented in paragraph form and reflected in a LP equation, showing the objective function and the constraints.arrow_forwardUse the method of linear programming to solve the problem.Pete's Coffees sells two blends of coffee beans: Morning Blend and South American Blend. Morning Blend is one-third Mexican beans and two-thirds Colombian beans, and South American Blend is two-thirds Mexican beans and one-third Colombian beans. Profit on the Morning Blend is $3 per pound, while profit on the South American Blend is $2.90 per pound. Each day, the shop can obtain 100 pounds of Mexican beans and 80 pounds of Colombian beans, and it uses that coffee only in the two blends. If the shop can sell all that it makes, how many pounds of Morning Blend and of South American Blend should Pete's Coffees prepare each day to maximize profit?arrow_forward
- Sometimes in linear programming, if the problem calls for it, it might be necessary to multiply two decision variables together to form a constraint. Ex. 1 X 2 20 True Falsearrow_forwardThe graphical method is used for linear programming problems with more than two variables. صواب İhi Oarrow_forwardLinear Programming A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F1 and F2 are available. Food F1, cost Php4 per unit food and F2 costs Php6 per unit. One unit of food F1 contains 3 units of vitamin A and 4 units of minerals. One unit of food F2, contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem. Find the minimum cost for diet that consist of mixture of these two foods and meets the minimal nutritional requirements.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY