bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 44.1DQ
To determine

To explain: The possibility for the existence of antiatoms in some part of the universe, their detection, and the problems might arise if we actually did go there.

Expert Solution & Answer
Check Mark

Answer to Problem 44.1DQ

There is possibility for the existence of antiatoms in the universe and their detection is not possible since their spectra will be the same as that of corresponding matter and the matter antimatter annihilation will result the destruction of our body if we actually go to a region of antimatter.

Explanation of Solution

The antiparticles bind with one another to form antimatter as exactly same as the ordinary particle bind to form the matter. If a positron and an antiproton bind together, the result will be an antihydrogen which can be considered the smallest antiatom. The physical principles indicate that in the universe, complex antimatter atomic nuclei composed of antiprotons and antineutrons are possible, as well as when they surrounded by positrons, the existence of antiatoms corresponding to the known chemical elements is also possible.

A specific method for the detection of the antimatter is not known since, if the neutral antiatoms do exist, their behavior will be exactly same as the normal atoms. So any spectra of an atom that given by the light that emit which composed of photons will be the same as the spectra that given by the antiatom, which composed of antiphotons. This is only because photon is its own antiparticle. So we cannot detect the antiatoms by identifying the light they emit as composed of antiphotons. The only way to identify the presence of antimatter is through their annihilation with matter. If we actually did go to the antimatter region the problem that might occur is that the annihilation of matter in our body with the antimatter in that region and thereby the complete destruction of our body.

Conclusion:

Thus, there is possibility for the existence of antiatoms in the universe and their detection is not possible since their spectra will be the same as that of corresponding matter and the matter antimatter annihilation will result the destruction of our body if we actually go to a region of antimatter.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
01:50
Students have asked these similar questions
Is it possible that some parts of the universe contain antimatter whose atoms have nuclei made of antiprotons and antineutrons, surrounded by positrons? How could we detect this condition without actually going there? Can we detect these antiatoms by identifying the light they emit as composed of antiphotons? Explain. What problems might arise if we actually did go there?
Explain with reasons and showing working whether the following reactions and decays would be possible. For those that are possible state with reasons which of the fundamental forces is responsible. et +er+ + V₂ + µ¯¯ + ¯ μ B+ →+K+ ++ + ¯ p+nt →Σ+ + K+ [Quark structures are Bub, : cc, K+: us, E+ : uus] Write down a reaction that would provide a clean method of measuring the struc- ture of the neutron. Explain your answer. Sketch on separate graphs the d and d quark distributions of the neutron as a function of x, the fraction of the neutron's momentum carried by the struck quark. Include in each graph a comparison with the d and d quark distributions of the proton.
This is a multiple choice with 5 parts so all parts need to be answered. They are not separate questions so this is not against guidelines. Please just give me the number of the questions and the letter of the answer, no need to do too much work. Thank you!!!

Chapter 44 Solutions

University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)

Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning