
Concept explainers
In the human ear, how do different hair cells respond to different frequencies of sound?
a. Waves of pressure move through the fluid in the cochlea.
b. Hair cells are “sandwiched” between membranes.
c. Receptor proteins in the stereocilia of each hair cell are different; each protein responds to a certain range of frequencies.
d. Because the basilar membrane varies in stiffness, it vibrates in certain places in response to certain frequencies.

Introduction:
The human ear apart from performing the function of hearing is also responsible for the maintenance of balance in the body. The hair cells present in the ear run through the basilar membrane.
Answer to Problem 1TYK
Correct answer:
The difference in the stiffness of the basilar membrane and its vibration at some places is caused in response to certain frequencies. Hearing refers to the sensation generated by the wavelike alterations in the air pressure known as sound.
Explanation of Solution
Explanation/Justification for the correct answer:
Option (d) is given as the stiffness variation of the basilar membrane and the vibration of hair cells in response to certain frequencies. The hair cells forming the rows within the middle chamber are pierced in a tissue, which is deposited on the basilar membrane. Some portions of the basilar membrane vibrate in response to specific frequencies and this causes the bending of the hair cell stereocilia. The hair cells present in the particular region on the membrane respond to the sound of a particular frequency. Hence, Option (d) is correct.
Explanation for incorrect answers:
Option (a) is given as the movement of the waves of pressure in the cochlea through the fluid. Hearing refers to the sensation generated by the wavelike alterations in the air pressure known as sound. The sound is composed of waves of pressure in the water or air. However, it does not describe the response of the hair cells. So, it is a wrong answer.
Option (b) is given that the hair cells are sandwiched between the membranes. The hair cells are embedded in the tissue that sits atop the basilar membrane. In addition to this, the hair cells touch another small surface known as a tectorial membrane. This results in the formation of the sandwich. However, it does not describe the response of the hair cells. So, it is a wrong answer.
Option (c) is given as the generation of the response by the proteins present in the stereocilia to a certain range of frequencies only. However, it is not the mechanism of response generation by the hair cells in order to aid hearing. So, it is a wrong answer.
Hence, options (a), (b), and (c) are incorrect.
Thus, the hair cells, which are present in the basilar membrane, generate response to different frequencies as a result of variation in the stiffness of the basilar membrane. Furthermore, the vibration occurs only in response to certain frequencies.
Want to see more full solutions like this?
Chapter 44 Solutions
Modified Mastering Biology With Pearson Etext -- Standalone Access Card -- For Biological Science (7th Edition)
- What is this?arrow_forwardMolecular Biology A-C components of the question are corresponding to attached image labeled 1. D component of the question is corresponding to attached image labeled 2. For a eukaryotic mRNA, the sequences is as follows where AUGrepresents the start codon, the yellow is the Kozak sequence and (XXX) just represents any codonfor an amino acid (no stop codons here). G-cap and polyA tail are not shown A. How long is the peptide produced?B. What is the function (a sentence) of the UAA highlighted in blue?C. If the sequence highlighted in blue were changed from UAA to UAG, how would that affecttranslation? D. (1) The sequence highlighted in yellow above is moved to a new position indicated below. Howwould that affect translation? (2) How long would be the protein produced from this new mRNA? Thank youarrow_forwardMolecular Biology Question Explain why the cell doesn’t need 61 tRNAs (one for each codon). Please help. Thank youarrow_forward
- Molecular Biology You discover a disease causing mutation (indicated by the arrow) that alters splicing of its mRNA. This mutation (a base substitution in the splicing sequence) eliminates a 3’ splice site resulting in the inclusion of the second intron (I2) in the final mRNA. We are going to pretend that this intron is short having only 15 nucleotides (most introns are much longer so this is just to make things simple) with the following sequence shown below in bold. The ( ) indicate the reading frames in the exons; the included intron 2 sequences are in bold. A. Would you expected this change to be harmful? ExplainB. If you were to do gene therapy to fix this problem, briefly explain what type of gene therapy youwould use to correct this. Please help. Thank youarrow_forwardMolecular Biology Question Please help. Thank you Explain what is meant by the term “defective virus.” Explain how a defective virus is able to replicate.arrow_forwardMolecular Biology Explain why changing the codon GGG to GGA should not be harmful. Please help . Thank youarrow_forward
- Stage Percent Time in Hours Interphase .60 14.4 Prophase .20 4.8 Metaphase .10 2.4 Anaphase .06 1.44 Telophase .03 .72 Cytukinesis .01 .24 Can you summarize the results in the chart and explain which phases are faster and why the slower ones are slow?arrow_forwardCan you circle a cell in the different stages of mitosis? 1.prophase 2.metaphase 3.anaphase 4.telophase 5.cytokinesisarrow_forwardWhich microbe does not live part of its lifecycle outside humans? A. Toxoplasma gondii B. Cytomegalovirus C. Francisella tularensis D. Plasmodium falciparum explain your answer thoroughly.arrow_forward
- Select all of the following that the ablation (knockout) or ectopoic expression (gain of function) of Hox can contribute to. Another set of wings in the fruit fly, duplication of fingernails, ectopic ears in mice, excess feathers in duck/quail chimeras, and homeosis of segment 2 to jaw in Hox2a mutantsarrow_forwardSelect all of the following that changes in the MC1R gene can lead to: Changes in spots/stripes in lizards, changes in coat coloration in mice, ectopic ear formation in Siberian hamsters, and red hair in humansarrow_forwardPleiotropic genes are genes that (blank) Cause a swapping of organs/structures, are the result of duplicated sets of chromosomes, never produce protein products, and have more than one purpose/functionarrow_forward
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Human Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningHuman Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning




